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Vector- valued Pseudomeasures
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] I Introduction

In this section, we list some definitions and results which are needed in
what follows. The proofs of these facts are similar to those in scalar- valued
functions. Hence we omit the details.

1. Let X be a Banach algebra, G a locally compact Abelian group, £ col-
lection of the Borel sets on G, 1 a Haar measure on G, ¥(G, X) the class of

. n .
X-valued simple functions on G;ji.e., functions of the form glx,xEl with {x,}

CX and {E,}{CZ, where yEg, is the characteristic function on the Borel set E,
E.NE;=¢ when i#j Then

(froeg ) () = fo,(r)gm(11_‘)dA(1)

m
is contained in (G, X) whenever ,= ile,, XE, &m= Elxzjx E,,- Moreover,
. = J]7=
»(G, X)CL! (G, X) where L‘(G, X) denotes the class of all X-valued Bochner
- integrable functions on G, and the norm of an element in L' (G, X) is defined

as |flle= _fG||f(t) |.dA(¢) . Obviously, the mapping

T: ¥(G, X) x9(G, X)—=>L' (G, X)(f, )" fn*8m :

is a bounded bilinear operator, where (G, X) xy(G, X) denotes direct product.

By the extension for a bounded bilinear operator, there exists anunique
extension of T and [T (f, &) |u<|fli]egl for all f, ge L' (G, X) .Owing to
above fact we shall write T(f, g) by notation f«g and refer fsg as convolu-
tions of f and g.

It is possible to show that above definition for the convolution is coinci
dent to usual sense of fxg.

- 2 . By the definition of convolution in L'(G, X) we have that L'(G, X)

is a Banach algebra with convolution as multiplication,

Py o
Let y€ G the dual group of G, |- | ~be the essential supremum norm.
* Received ept.20, 1986.
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Then following formula is true

e )= 7008005 VoM=< S el 1/ selu< ] hlel
for all f, g€ L' (G, X) .

Since f=# implies f=g for all f, g€ L' (G, X) (see ( 17),L'(G, X) is a
semisimple Banach algebra .

3 Theorem Let X* be the dual space of X, put A(G, X*) —{f(t) |fe
L! (G X*)}). Then A(G X*) is a Banach algebra under pointwise operation
and with the norm ”f“ ax = 1o

Proof Apply 1 and 2.

1. The vector-valued pseudomeasures

1 . Definition Collection of all continuous linear functionals on A(G, X*)
is called vector-valued pseudomeasures and denoted by P(G, A*). We shall
take notation |- | as the norm in the Banach space P(G, A").

2. Theorem Let G be a locally compact Abelian group.Then

(i) m(G, X)gm (G, X**)CP(G, A*). Here m(G, X) denotes the class of
all X-valued bounded measures on G; i.e., X-valued bounded semivariation
measures on G, and the notation (denotes isometric embedding.

(ii ) M(G, X)GM(G, X**)GP(G, A*) .Here M(G, X) denotes the class
of all X-valued bounded variation measures on G .

Proof (i) Let FEmM(G, X**).We have

A A A
Cf, FY = £, F> = [ f(r)F(r)dn(r),
G

which is valid for each }\GA(G, X*) (see(1)),where n is the Haar measure
on G. Since the following inequalities
A A A
1< Sy Pyl FlL=l fle== 1 Fllese 1 f N acxe)

is obviously true F has been defined a bounded linear functional on A(G, X*)
as equality ¢/, F>—ff(t)dp(t) then Fe P(G, A*), m(G, X*"*)CP(G, A*).The
inclusion relation m(G, X)Cm (G, X**) is obvious.

(ii ) The conclusion is apparent from discussing for (i) and the inclu -
sion relation M (G, X* " m(G, X*™*)(see [ 1)) ;

I On the Fourier transform for elements in P(G, A")

/\1 . Lemma P(G, A*), as in definiti/({n II,1, is isometrically isomorphic to
L' (G, X*)*, the conjugate space of L' (G, X*).
Proof Let o€ P(G, A*). We define the mappmg
L, L'(G X*)—~C, f’-’(f o7 .
Here <f oY will denote the pairing between elements of A(G, X*) and
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P(G, A*), C is the set of all complex numbers. We first note that from defi-.
nition in [ .1 L, is well defined.Because |[L,(f)|= |<j/"\,a> 1<|lo |l ]]}/”\|| AKX =
lelelflL:, therefore L, is a bounded linear functional on L' (é, X*) whose
operator norm | L,| is not greater than |o|,.
Suppose, conversely, that L & r (é, X*)*.Then (f, L,) is well defined
when f belongs to ! (é X*), since
< f, La>|<||L 1T =120 0 F] ke
thus ¢ f, L,> has been defined a bounded linear functional on A(G, X*);
there exists a ¢ € P(G, A*) such that (f oy =(f,L,> and |o ||P<"L |. By
preceding inequality |L,|<|o[s, we conclude from eqqality (f o) =<{f, Ly
that ¢ is isometrically corresponding to L, where o€ P(G, A*), L ¢ r ((/'\i X*)*.
. Corollary If X*" possesses the Radon—leodym property, then P(G,
A*) is isometrically isomorphic to L* (G X**).In this time we shall write
P(G, X**) as P(G, A*), where L” (G, )s\“) is the class of X** -valued essen-
tially bounded measurable functions on G Certainly, P(G, A*) is isometrically
isomorphic to L”(8, X) when X is self -conjugate.
Proof We can see from [ 2], that L' (CA}, X*)* =L°°(C/\i, X**) .Thus, the
conclusion in Corollary 2 is true.
3 . Definition In the view point of Lemma II. 1,let o€ P(G, A") Then
there exists a unique L, such that (f o) =< f, L,y for any f¢& L' (G X*).
will be known as the Fourier transform of o, and denoted by & .From this
definition it is immediately seen that the equality g?,o> ={f, 9) holds for any
vector-valued pseudomeasure o ¢ P(G, A*) .Set P(G, A*)" = 6 lo e P(G, A*)},
then
P(G, A*)" =L (G, X*)*.
4. Corollary If X** possesses the Radon-Nikodym property, then equa-.
lity P(G, X**)" =L°°(8, X**) holds.
Proof Apply the conclusions of lemma [. 2 and definition 3.
5. Theorem (i) The inclusion relations
L' (G, X)CL' (G, X*"*)CP(G, A*)
hold. Furthermore, when feL'(G, X*), the Fourier transform of vector-va
lued function f coincides to the Fourier transform of f as a vector-valued
pseudomeasure .,
(ii ) There exist properties of m(G, X**) and M(G, X**) similar to (i).
ProofA Let us take arbitrary e/&ement F in m(G, X**). We see, from [ 1],
that (f, F) =(f, F) for all feL' (G, X*). Furthermore by the definition of the
Fourier transform for vector-valued pseudomeasure and the uniqueness of
representation for functional, it is evident that the Fourier transform of vector-



»unded semivariation measure F coincides to the Fourier transform of
F as a vector-valued pseudomeasure,
For arbitrary feL'(G, X"*), the mapping

F. (G, £)—»X"*, Er[/fdi
A Eoa A
defines an element in M(G, X**) and F(r) = f(r) for any reG, thus when

we note that M(G, X**)Cm (G, X**), the conclusion in theorem will be ob-
tained,

IV Convolution of two vector- valued pseudomeusures

1 . Definition Suppose that L'(é, X*)* is a Banuch algebra Then, for all
0,0, P(G, A*), 9].925 L (e, X*)* as &,,0,¢L (8, X")* where denotes
multiplication in L' (é, X*)*. Recalling the preceding definition of the Fourier
transform for ¢ (see [[.3) it is evident that there exists an unique o ¢ P(G,
A" ) such that 9=91-92.We define 0 =0, »0, and ¢ will be known as convolution
of ¢, and o,.

This definition is meaningful according to preceding disc sion.Obviously
and |o,*o,)p= (0,00 )] = |‘/7\1'/”\2"<
5] 1821 = lo]lollo2)s where |-| denotes the norm of the Banach space
L ((/}\, X*)* (see M.1 and I.3). Furthermore, if 0, :(/}\2, then (;\, 01-0,) =L [,
8 —92> = 0for all feL' (CA}, X*) .Consequently, 0,~0, =0, thus 0, =0,

(0, *02)/\ :31’92 fOr all Ul,azfp(G’ A‘)

We summarize the above discussion into the following theorem.

2 . 'Theorem If L‘(é, X*)* is a Banach algebra,then P(G, A*) is a semi-
simple Banach algebra. A

3. Example If X** has the Radon—Nikodym property, then L' (G, X*)*
:L“(é, X**){?) and the latter is a Banach algebra Aunder pointwise operations
and with the essential supremum norm of space L*(G, X**). Consequently,
P(G, X**) is a2 semisimple Banach algebra.

V Remarks

1. Suppose X** do not possess the Radon—Nikodym property. Since L°°(8,
X“"");Ll (é\, X*)*, thus L” (é\}, X**) is a proper subste of P(G, A*)" (see (2))

2. Even though we X is self-conjugate and possesses the Radon—Nikodym
property .equality m (G, X**) =P(G, X**) also cannot hold, when G is an
infinite locally compact group.

In generai, there exists a (peCc(é) such that :pé“m(G)A,where cc(é) deno -
tes the set of complex-valued continuous functions on é with compact sup-
port and m-.'G)A is the set of the Fourier transforms for all bounded variation
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A
measure on G (see [ 2]). Thus x**9p ¢ C(G, X**) for all x** ¢X** . We can

prove x**p €m (G, x**)"_ Now we assume that x**¢ belongs to m(G, X**)",

A
then there exists anunique Fem(G X**) such that F(r)=x*"¢(r) .When we

LEX

choose x ey

eX*** so as to satisfy (x**, x =1, it is easily seen that
(?‘(r), x***y =(F, x***Y"(r) (see [ 1)). But since (I{"\(r), x***y =p(r) and
(F, x***) is a bounded variation scalar measure g ¢ m(G)A.This contradicts
the assumption gz m(G)"

From preceding proof we see that {x**¢|x** eX"*,p is a fixed element in
C(G)}CCC(G X**)cL” (G X**) =P(G, X**)", and same set cannot belongs
to m(G, X**)", therefore m(G, X**)<SP(G, X**) .

3. It should be noted that the norm of elements in m(G, X**) and M(G,
X**) as a vector-valued pseudomeasure is, in general, less than its norm as a
vector-valued measure, for example, |u|p= ||/4||Lm<||/4 [when ueM(G, X**).

VI On vector-valued pseudomeasures in L2(G, X)

. Lemma Let the set of functions in A(G, X) with:compact support be
denoted by A(G, X) . Then A(G, X) is dense in A(G, X) and L*(G, X),
where L?(G, X) is the class of X-valued square integrable functions on G.

Proof Since '~I‘(G X) is dense in L' (G X) thus
A, (G, X)—{f(t)lfe‘I’(G X)}
is dense in A(G, X) . Suppose Ac(G), A(G) and A,(G) equal to A(G, C),
AG, C) e‘nd A, (G, C) respectively, where C is the set of all complex numbers
(see [ 3)).Since Ac(G) is dense in A,(G) because A (G) is dense in A(G),
then for any

M=
L

A A
fn‘="' IXE iE A‘(G, x)

i

1
. A e : AA . o
there is some g,= ;lx,h,, such that |f,-2,]| axy<¢e where ¢ is a small positive
scalar, ﬁ,e Ac(G) and
_n
“X By aor<<e/n|x;|x. A

Clearly, g,, belongs to AC(G X) Thus for any ¢>0 and fe¢ A(G, X), there is
some f,eA (G, X) and some g,e A(G, X) such that .

"f f | aco<e, | Z- g | acor<<e .
Via simple computation we have

A A

1f -8 acxr<2e .

From previous estimation, we conclude that A.(G, X) is dense in A(G, X).
The proof of denseness for Ac(G, X) in L*(G, X) can be obtained by the

similar procedure, we only note the denseness of ¥ (G, X) in L*G, X) and



A.(G) in L*(G) . Here L2(G) denotes the class of complex-valued square inte-—
grable functions on G.

2 . The Plancherel formula in L*(G, H) . Using the plancherel theorem in
L%(G,H)we can define the Fourier transformation f of an element f in L*(G, H)
where H is the Hilbert space (see ( 1)). In particular, f will be called the
Fourier -Plancherel transformatlon of f when feL? (G, H) .

For any fe LZ(G H) we shall define

f@ = [, r) f(ranr)

as the Fourier trunsform of f By these definitions we can easily conclude that
formula
AN
(f) = (f) =f
holds for all fe¢L*(G, H) .Here f is the inversion of f by the Plancherel
theorem in L2(G, H) .Using this equality and the Parsevel formula in L*(G, H)
(see [ 1)), we can obtain the following the Plancherel formula
A A A
i( ), g(r)y da@r) = f(/(t), (g)A(t)>Hd/1(t) = f{ [, ?(r))Hdry (r)

where (+, X), denotes the inner-product in H, and fe Lz(é, H), g¢ L*(G, H).
3. Definition We shall say that oe¢P(G, A*) belongs to L*(G, X) if there
exists a geL?*(G, X) such that (f,a) =(f: g> for all fAe_ A (G, X*) Since A(G,
X*) is dense in L%(G, X*) (seeVl.1), g is uniquely determined
4 . Theorem Let X be the Hilbert space H If ¢ is vector-valued pseudo-
measure in L2(G, H) (seeVl[.3), then the Fourier transform of ¢ as a H-valued
pseudomeasure and the Fourier-Plancherel transformation of ¢ as an element of
L*(G, H) agree.
Proof Since H is self-conjugate and has the Radon- leodym property ©
P(G, H) = A(G, H*)* = A(G, H)*,
PG, B =L™(G, H) =L' (G, H*)* =L' (G, H)*,
(see [1.1and MI.2), suppose o ¢ P(G, H)NL*(G, H), by defmmon m VI.3 we co
conclude that there is an unique geL?*(G, H) such that (f gy = <f g> for all

3]

fe Ac(G, H) .An easy computation using property of the Fourier transform for v
vector -valued pseudomeasure and the Plancherel formula (seeV[.2) shows for
each fAe Ac(G, H) that
A A A A
Cf,0) =X f,0>=f,8> =/, 8.

Appealing to the denseness A.(G, H) in A(G; H) (see VI.l) we conclude that
above equality holds for all fe¢L' (G, H).Therefore & =2 .

. Theorem If o¢P(G, H), then ¢ ¢L*(G, H) if and only if aeLz(G H)N
L (é, H)

Proof Necessity is immediately apparent from theorem V[.4.Now we prove



that the condition is sufficient .
If 5e Lz(é, H), then the mapping N

T, L*(G, H)—=C, fi~(f, o)

defines a continuous linear functional on L?(G, H) because
Tr1=K A6 1<IP Il 1A elo e

Thus there is unique ge¢L2(G, H) such that

N6y =Tf=(f, ey
for all f¢L?(G, H), using the Plancherel formula in L?(G, H) (seeV[.2) and the
property of vector-valued pseudomeasure we conclude that for all fe LZ(G, H)
the equality (f, o) =< (P",0> =(f, 6> =(f, & holds. Since Ac(G, H) is dense
in L2(G, H), obviously, (f, o) =< f, g> for all fe Ac(G, H) By definition in V[.3
we have 0 ¢L2(G, H) .
a The proof of theorem is complete.
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' (from 24)
Theorem 3 iLet {X,} be a strictly stationary ¢-mixing sequence of random

variables with EX, -0,EX{<oc and 02= ESl»coas n—>oo If 3. @!’%(2" <oo,then,

n=1
without changing the distribution of { S (1)} we can redefine {S(r)} on a richer pro-
bability space together with a standard Wiener process {W(¢),1=>0} such that
S(n —-W(o? = o0((aHoglog)*'®) a.s.

as t—+oo.Where S(1) =) X, and o= ESX1).
t

i<
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