Journal of Mathematical Research and Exposition vol.9, No.1, Feb., 1989

Vector-valued Pseudomeasures

Yu Shumo

(Department of Mathematics, Fudan University, Shanghai)

I Introduction

In this section, we list some definitions and results which are needed in what follows. The proofs of these facts are similar to those in scalar-valued functions. Hence we omit the details.

1. Let X be a Banach algebra, G a locally compact Abelian group, Σ collection of the Borel sets on G, λ a Haar measure on G, ψ (G, X) the class of X-valued simple functions on G, i.e., functions of the form $\sum_{i=1}^{n} x_i \chi_{E_i}$ with $\{x_i\}$ \subset X and $\{E_i\}_{i=1}^{n} \Sigma$, where χ_{E_i} is the characteristic function on the Borel set E_i $E_i \cap E_j = \phi$ when $i \neq j$ Then

$$(f_n *g_m)(t) = \int_G f_n(\tau) g_m(t\tau^{-1}) d\lambda(\tau)$$

is contained in $\psi(G, X)$ whenever $_n = \sum_{i=1}^n x_{1i} \chi_{E_1i} g_m = \sum_{j=1}^m x_{2j} \chi_{E_2j}$. Moreover, $\psi(G, X) \subset L^1(G, X)$ where $L^1(G, X)$ denotes the class of all X-valued Bochner integrable functions on G, and the norm of an element in $L^1(G, X)$ is defined as $||f||_{L^1} = \int_G ||f(t)||_X d\lambda(t)$. Obviously, the mapping

$$T: \psi(G, X) \times \psi(G, X) \rightarrow L^{1}(G, X)(f_{n}, g_{m}) \mapsto f_{n} *g_{m}$$

is a bounded bilinear operator, where $\psi(G, X) \times \psi(G, X)$ denotes direct product.

By the extension for a bounded bilinear operator, there exists an unique extension of T and $||T(f,g)||_{L^1} \le ||f||_{L^1} ||g||_{L^1}$ for all $f,g \in L^1(G,X)$. Owing to above fact we shall write T(f,g) by notation f*g and refer f*g as convolutions of f and g.

It is possible to show that above definition for the convolution is coincident to usual sense of f *g.

2. By the definition of convolution in $L^1(G, X)$ we have that $L^1(G, X)$ is a Banach algebra with convolution as multiplication.

Let $y \in \widehat{G}$ the dual group of G, $\|\cdot\|_{L^{\infty}}$ be the essential supremum norm.

^{*} Received ept.20, 1986.

Then following formula is true

 $(f * g)^{\wedge} (y) = \hat{f}(y) \hat{g}(y); \| (f * g)^{\wedge} \|_{\mathbf{L}^{\infty}} \le \| f \|_{\mathbf{L}} \| g \|_{\mathbf{L}^{1}}; \| f * g \|_{\mathbf{L}^{1}} \le \| f \|_{\mathbf{L}^{1}} \| g \|_{\mathbf{L}^{1}}$ for all $f, g \in L^1(G, X)$.

Since $\hat{f} = \hat{g}$ implies f = g for all $f, g \in L^1(G, X)$ (see [1]), $L^1(G, X)$ is a semisimple Banach algebra.

3. Theorem Let X* be the dual space of X, put A(G, X*) = $\{f(t) | f \in A(G, X^*) = \{f(t) | f \in A(G, X^$ $L^1(\hat{G}, X^*)$. Then $A(G, X^*)$ is a Banach algebra under pointwise operation and with the norm $\|f\|_{\mathbf{A}(\mathbf{X}^{\bullet})} = \|f\|_{\mathbf{L}^{1}}$

Proof Apply 1 and 2.

II. The vector-valued pseudomeasures

- 1. Definition Collection of all continuous linear functionals on $A(G, X^*)$ is called vector-valued pseudomeasures and denoted by P(G, A*). We shall take notation $\|\cdot\|_P$ as the norm in the Banach space $P(G, A^*)$.
 - 2. Theorem Let G be a locally compact Abelian group. Then
- (i) $m(G, X) \subset m(G, X^{**}) \subset P(G, A^{*})$. Here m(G, X) denotes the class of all X-valued bounded measures on G; i.e., X-valued bounded semivariation measures on G, and the notation chenotes isometric embedding.
- (ii) $M(G, X) \subset M(G, X^{**}) \subset P(G, A^{*})$. Here M(G, X) denotes the class of all X-valued bounded variation measures on G.

(i) Let $F \in m(G, X^{**})$. We have

$$\langle f, F \rangle = \langle f, F \rangle = \int_{G} f(r) F(r) d\eta(r),$$

which is valid for each $f \in A(G, X^*)$ (see [1]), where η is the Haar measure on G. Since the following inequalities

$$|\langle \hat{f}, F \rangle| \leq ||\hat{f}||_{\mathbf{L}^{\infty}} ||f||_{\mathbf{L}^{\infty}} = ||\hat{f}||_{\mathbf{L}^{\infty}} ||f||_{\mathbf{A}(\mathbf{X}^{\bullet})}$$

is obviously true, F has been defined a bounded linear functional on $A(G, X^*)$ as equality $\langle f, F \rangle = \int_{0}^{\infty} f(t) dF(t)$, then $F \in P(G, A^*)$, $m(G, X^{**}) \subset P(G, A^*)$. The inclusion relation $m(G, X) \subset m(G, X^{**})$ is obvious.

(ii) The conclusion is apparent from discussing for (i) and the inclusion relation $M(G, X^{**}) \subseteq m(G, X^{**})$ (see [1])

■ On the Fourier transform for elements in P(G, A*)

1. Lemma P(G, A*), as in definition [1.1, is isometrically isomorphic to $L^{1}(G, X^{*})^{*}$, the conjugate space of $L^{1}(G, X^{*})$.

Proof Let
$$\sigma \in P(G, A^*)$$
. We define the mapping $L_{\sigma}: L^1(\mathring{G}, X^*) \rightarrow C, f \mapsto \langle \mathring{f}, \sigma \rangle$.

Here $\langle \hat{f}, \sigma \rangle$ will denote the pairing between elements of A(G, X*) and

P(G, A*), C is the set of all complex numbers. We first note that from definition in II.1 L_{σ} is well defined. Because $|L_{\sigma}(f)| = |\langle \hat{f}, \sigma \rangle| \leq ||\sigma||_{P} ||\hat{f}||_{A(X^{\bullet})} = ||\sigma||_{P} ||f||_{L^{1}}$, therefore L_{σ} is a bounded linear functional on $L^{1}(\hat{G}, X^{*})$ whose operator norm $||L_{\sigma}||$ is not greater than $||\sigma||_{P}$.

Suppose, conversely, that $L_{\sigma} \in L^{1}(\hat{G}, X^{*})^{*}$. Then $\langle f, L_{\sigma} \rangle$ is well defined when f belongs to $L^{1}(\hat{G}, X^{*})$, since

$$|\langle f, L_{\sigma} \rangle| \leq ||L_{\sigma}|| ||f||_{\mathbf{L}^{1}} = ||L_{\sigma}|| ||\mathring{f}||_{\mathbf{A}(\mathbf{X}^{\bullet})},$$

thus $\langle f, L_{\sigma} \rangle$ has been defined a bounded linear functional on A(G, X*); ..., there exists a $\sigma \in P(G, A^*)$ such that $\langle f, \sigma \rangle = \langle f, L_{\sigma} \rangle$ and $\|\sigma\|_P \leqslant \|L_{\sigma}\|$. By preceding inequality $\|L_{\sigma}\| \leqslant \|\sigma\|_P$, we conclude from equality $\langle f, \sigma \rangle = \langle f, L_{\sigma} \rangle$ that σ is isometrically corresponding to L_{σ} where $\sigma \in P(G, A^*), L_{\sigma} \in L^1(\hat{G}, X^*)^*$.

2. Corollary If X^{**} possesses the Radon—Nikodym property, then $P(G, A^*)$ is isometrically isomorphic to $L^{\infty}(\mathring{G}, X^{**})$. In this time we shall write $P(G, X^{**})$ as $P(G, A^*)$, where $L^{\infty}(\mathring{G}, X^{**})$ is the class of X^{**} -valued essentially bounded measurable functions on \mathring{G} Certainly, $P(G, A^*)$ is isometrically isomorphic to $L^{\infty}(\mathring{G}, X)$ when X is self-conjugate.

Proof We can see from [2], that $L^1(\hat{G}, X^*)^* = L^{\infty}(\hat{G}, X^{**})$. Thus, the conclusion in Corollary 2 is true.

3. Definition In the view point of Lemma II. 1, let $\sigma \in P(G, A^*)$. Then there exists a unique L_{σ} such that $\langle f, \sigma \rangle = \langle f, L_{\sigma} \rangle$ for any $f \in L^1(G, X^*)$. L_{σ} will be known as the Fourier transform of σ , and denoted by $\overset{\wedge}{\sigma}$. From this definition it is immediately seen that the equality $\langle f, \sigma \rangle = \langle f, \overset{\wedge}{\sigma} \rangle$ holds for any vector-valued pseudomeasure $\sigma \in P(G, A^*)$. Set $P(G, A^*) = \{\overset{\wedge}{\sigma} | \sigma \in P(G, A^*) \}$, then

$$P(G, A^*)^{\wedge} = L^1(G, X^*)^*$$
.

4. Corollary If X^{**} possesses the Radon-Nikodym property, then equality $P(G, X^{**})^{\wedge} = L^{\infty}(G, X^{**})$ holds.

Proof Apply the conclusions of lemma II. 2 and definition III.3.

5. Theorem (i) The inclusion relations

$$L^1(G, X) \subset L^1(G, X^{**}) \subset P(G, A^*)$$

hold. Furthermore, when $f \in L^1(G, X^*)$, the Fourier transform of vector-valued function f coincides to the Fourier transform of f as a vector-valued pseudomeasure.

(ii) There exist properties of $m(G, X^{**})$ and $M(G, X^{**})$ similar to (i).

Proof Let us take arbitrary element F in $m(G, X^{**})$. We see, from [1], that $\langle f, F \rangle = \langle f, F \rangle$ for all $f \in L^1(G, X^*)$. Furthermore by the definition of the Fourier transform for vector-valued pseudomeasure and the uniqueness of representation for functional, it is evident that the Fourier transform of vector-

bunded semivariation measure F coincides to the Fourier transform of F as a vector-valued pseudomeasure.

For arbitrary $f \in L^1(G, X^{**})$, the mapping

$$F_{:}$$
 $(G, \Sigma) \rightarrow X^{**}, E \mapsto \int f d\lambda$

defines an element in $M(G, X^{**})$ and $\hat{F}(r) = \hat{f}(r)$ for any $r \in \hat{G}$, thus when we note that $M(G, X^{**}) \subset m(G, X^{**})$, the conclusion in theorem will be obtained.

IV Convolution of two vector-valued pseudomeusures

1. Definition Suppose that $L^1(\hat{G}, X^*)^*$ is a Banuch algebra Then, for all $\sigma_1, \sigma_2 \in P(G, A^*), \stackrel{\wedge}{\sigma_1} \stackrel{\wedge}{\sigma_2} \in L^1(\hat{G}, X^*)^*$ as $\stackrel{\wedge}{\sigma_1}, \stackrel{\wedge}{\sigma_2} \in L^1(\hat{G}, X^*)^*$ where denotes multiplication in $L^1(\hat{G}, X^*)^*$. Recalling the preceding definition of the Fourier transform for σ (see [].3) it is evident that there exists an unique $\sigma \in P(G, A^*)$ such that $\stackrel{\wedge}{\sigma} = \stackrel{\wedge}{\sigma_1} \stackrel{\wedge}{\sigma_2}$. We define $\sigma = \sigma_1 * \sigma_2$ and σ will be known as convolution of σ_1 and σ_2 .

This definition is meaningful according to preceding disc sion. Obviously $(\sigma_1 * \sigma_2)^{\wedge} = \stackrel{\wedge}{\sigma}_1 \cdot \stackrel{\wedge}{\sigma}_2$ for all $\sigma_1, \sigma_2 \in P(G, A^*)$, and $\|\sigma_1 * \sigma_2\|_P = \|(\sigma_1 * \sigma_2)^{\wedge}\| = \|\stackrel{\wedge}{\sigma}_1 * \stackrel{\wedge}{\sigma}_2\| < \|\stackrel{\wedge}{\sigma}_1\| \|\stackrel{\wedge}{\sigma}_2\| = \|\sigma_1\|_P \|\sigma_2\|_P$ where $\|\cdot\|$ denotes the norm of the Banach space $L^1(\stackrel{\wedge}{G}, X^*)^*$ (see [1] and [1] 3). Furthermore, if $\stackrel{\wedge}{\sigma}_1 = \stackrel{\wedge}{\sigma}_2$, then $\stackrel{\wedge}{\sigma}_1 = \stackrel{\wedge}{\sigma}_2$ = 0 for all $f \in L^1(\stackrel{\wedge}{G}, X^*)$. Consequently, $\sigma_1 - \sigma_2 = 0$, thus $\sigma_1 = \sigma_2$

We summarize the above discussion into the following theorem.

- 2. Theorem If $L^1(\hat{G}, X^*)^*$ is a Banach algebra, then $P(G, A^*)$ is a semisimple Banach algebra.
- 3. Example If X^{**} has the Radon—Nikodym property, then $L^1(\hat{G}, X^{*})^* = L^{\infty}(\hat{G}, X^{**})^{(2)}$, and the latter is a Banach algebra under pointwise operations and with the essential supremum norm of space $L^{\infty}(\hat{G}, X^{**})$. Consequently, $P(G, X^{**})$ is a semisimple Banach algebra.

V Remarks

- 1. Suppose X^{**} do not possess the Radon—Nikodym property. Since $L^{\infty}(\mathring{G}, X^{**}) \subseteq L^{1}(\mathring{G}, X^{*})^{*}$, thus $L^{\infty}(\mathring{G}, X^{**})$ is a proper subste of $P(G, A^{*})^{\wedge}$ (see [2])
- 2. Even though we X is self-conjugate and possesses the Radon—Nikodym property equality $m(G, X^{**}) = P(G, X^{**})$ also cannot hold, when G is an infinite locally compact group.

In general, there exists a $\varphi \in C_c(\mathring{G})$ such that $\varphi \in m(G)^{\wedge}$, where $C_c(\mathring{G})$ denotes the set of complex-valued continuous functions on \mathring{G} with compact support and $m(G)^{\wedge}$ is the set of the Fourier transforms for all bounded variation

measure on G (see [2]). Thus $x^{**}\varphi \in C_c(\mathring{G}, X^{**})$ for all $x^{**}\in X^{**}$. We can prove $x^{**}\varphi \in m(G, x^{**})^{\wedge}$. Now we assume that $x^{**}\varphi$ belongs to $m(G, X^{**})^{\wedge}$, then there exists an unique $F \in m(G \setminus X^{**})$ such that $\hat{F}(r) = x^{**} \varphi(r)$. When we choose $x^{***} \in X^{***}$ so as to satisfy $\langle x^{**}, x^{***} \rangle = 1$, it is easily seen that $\langle \hat{F}(r), x^{***} \rangle = \langle F, x^{***} \rangle^{\wedge}(r)$ (see [1]). But since $\langle \hat{F}(r), x^{***} \rangle = \varphi(r)$ and $\langle F, x^{***} \rangle$ is a bounded variation scalar measure $\varphi \in m(G)^{\wedge}$. This contradicts the assumption $\varphi \in m(G)^{\wedge}$.

From preceding proof we see that $\{x^{**}\varphi | x^{**} \in X^{**}, \varphi \text{ is a fixed element in } \}$ $C_c(\mathring{G})$ $\subset C_c(\mathring{G}, X^{**}) \subset L^{\infty}(\mathring{G}, X^{**}) = P(G, X^{**})^{\wedge}$, and same set cannot belongs to $m(G, X^{**})^{\wedge}$, therefore $m(G, X^{**}) \subseteq P(G, X^{**})$.

3. It should be noted that the norm of elements in $m(G, X^{**})$ and $M(G, X^{**})$ X**) as a vector-valued pseudomeasure is, in general, less than its norm as a vector-valued measure, for example, $\|\mu\|_{P} = \|\mathring{\mu}\|_{L^{\infty}} \|\mu\|_{W}$ when $\mu \in M(G, X^{**})$.

VI On vector-valued pseudomeasures in $L^2(G, X)$

1. Lemma Let the set of functions in A(G, X) with compact support be denoted by $A_c(G, X)$. Then $A_c(G, X)$ is dense in A(G, X) and $L^2(G, X)$, where L²(G, X) is the class of X-valued square integrable functions on G.

Proof Since $\Psi(\hat{G}, X)$ is dense in $L^1(\hat{G}, X)$, thus $A_{\psi}(G, X) = \{\hat{f}(t) | f \in \Psi(\hat{G}, X)\}$

is dense in A(G, X). Suppose $A_C(G)$, A(G) and $A_{\phi}(G)$ equal to $A_C(G, C)$, A(G, C) and $A_{\bullet}(G, C)$ respectively, where C is the set of all complex numbers (see (3)). Since $A_c(G)$ is dense in $A_c(G)$ because $A_c(G)$ is dense in A(G), then for any

$$\hat{f}_n = \sum_{i=1}^n x_i \hat{\chi}_{\mathbf{E}_i} \in \mathbf{A}_{\phi}(\mathbf{G}, \mathbf{X})$$

there is some $\hat{g}_n = \sum_{i=1}^n x_i \hat{h}_i$, such that $\|\hat{f}_n - \hat{g}_n\|_{A(X)} < \varepsilon$ where ε is a small positive scalar, $h_i \in A_C(G)$ and

 $\|\hat{\chi}_{E_i} - \hat{h}_i\|_{A(C)} < \varepsilon/n \|x_i\|_{X}.$ Clearly, \hat{g}_n belongs to $A_C(G, X)$. Thus for any $\varepsilon > 0$ and $f \in A(G, X)$, there is some $\hat{f}_{\epsilon} \in A_{\epsilon}(G, X)$ and some $\hat{g}_{\epsilon} \in A_{c}(G, X)$ such that $\|\hat{f} - \hat{f}_{\epsilon}\|_{A(X)} < \varepsilon, \quad \|\hat{g} - \hat{g}_{\epsilon}\|_{A(X)} < \varepsilon.$

$$\|\hat{f} - \hat{f}_{\epsilon}\|_{\mathbf{A}(\mathbf{X})} < \varepsilon, \quad \|\hat{g} - \hat{g}_{\epsilon}\|_{\mathbf{A}(\mathbf{X})} < \varepsilon$$

Via simple computation we have

$$\|\hat{f}-\hat{g}_{\bullet}\|_{\mathbf{A}(\mathbf{X})} < 2\varepsilon$$
.

From previous estimation, we conclude that $A_c(G, X)$ is dense in A(G, X).

The proof of denseness for $A_{C}(G, X)$ in $L^{2}(G, X)$ can be obtained by the similar procedure, we only note the denseness of $\Psi(G, X)$ in $L^2(G, X)$ and

 $A_{C}(G)$ in $L^{2}(G)$. Here $L^{2}(G)$ denotes the class of complex-valued square integrable functions on G.

2. The Plancherel formula in L²(G, H). Using the plancherel theorem in $L^2(G,H)$ we can define the Fourier transformation f of an element f in $L^2(G,H)$ where H is the Hilbert space (see [1]). In particular, \hat{f} will be called the Fourier-Plancherel transformation of f when $f \in L^2(G, H)$.

For any $f \in L^2(\mathring{G}, H)$ we shall define

we shall define

$$f(t) = \int (t, r) f(r) d\eta(r)$$

as the Fourier trunsform of f By these definitions we can easily conclude that formula

$$(f)^{\wedge} = (f)^{\vee} = f$$

 $(f)^{\wedge} = (f)^{\vee} = f$ holds for all $f \in L^2(G, H)$. Here f is the inversion of f by the Plancherel theorem in L²(G, H). Using this equality and the Parsevel formula in L²(G, H)

(see [1]), we can obtain the following the Plancherel formula
$$\int_{G} \langle \hat{f}(t), g(t) \rangle \ d\lambda(t) = \int_{G} \langle \hat{f}(t), (\hat{g})^{\wedge}(t) \rangle_{H} d\lambda(t) = \int_{G} \langle f(r), \hat{g}(r) \rangle_{H} d\eta(r)$$

where $\langle \cdot, X \rangle_H$ denotes the inner-product in H, and $f \in L^2(\mathring{G}, H)$, $g \in L^2(G, H)$.

- 3. Definition We shall say that $\sigma \in P(G, A^*)$ belongs to $L^2(G, X)$ if there exists a $g \in L^2(G, X)$ such that $\langle f, \sigma \rangle = \langle f, g \rangle$ for all $f \in A_C(G, X^*)$ Since $A_C(G, X^*)$ X^*) is dense in $L^2(G, X^*)$ (see VI.1), g is uniquely determined
- 4. Theorem Let X be the Hilbert space H If σ is vector-valued pseudomeasure in $L^2(G, H)$ (see V[.3), then the Fourier transform of σ as a H-valued pseudomeasure and the Fourier-Plancherel transformation of σ as an element of $L^{2}(G, H)$ agree.

Proof Since H is self-conjugate and has the Radon-Nikodym property [3]

$$P(G, H) = A(G, H^*)^* = A(G, H)^*,$$

 $P(G, H)^{\wedge} = L^{\infty}(G, H) = L^{1}(\mathring{G}, H^*)^* = L^{1}(\mathring{G}, H)^*,$

(see [].1 and [[].2), suppose $\sigma \in P(G, H) \cap L^2(G, H)$, by definition in VI.3 we co conclude that there is an unique $g \in L^2(G, H)$ such that $\langle f, \sigma \rangle = \langle f, g \rangle$ for all $\stackrel{\wedge}{f} \in A_{\mathbb{C}}(G, H)$. An easy computation using property of the Fourier transform for v vector-valued pseudomeasure and the Plancherel formula (see VI.2) shows for each $f \in A_C(G, H)$ that

$$\langle f, \hat{\sigma} \rangle = \langle \hat{f}, \sigma \rangle = \langle \hat{f}, g \rangle = \langle f, \hat{g} \rangle.$$

Appealing to the denseness $A_{C}(G, H)$ in A(G, H) (see VI.1) we conclude that above equality holds for all $f \in L^1(\hat{G}, H)$. Therefore $\hat{\sigma} = \hat{g}$.

5. Theorem If $\sigma \in P(G, H)$, then $\sigma \in L^2(G, H)$ if and only if $\overset{\wedge}{\sigma} \in L^2(\hat{G}, H) \cap$ L (Ĝ, H)

Proof Necessity is immediately apparent from theorem VI.4. Now we prove

that the condition is sufficient.

If $\hat{\sigma} \in L^2(\hat{G}, H)$, then the mapping

$$T: L^2(G, H) \rightarrow C, f \mapsto \langle f, \sigma \rangle$$

defines a continuous linear functional on L2(G, H) because

$$|Tf| = |\langle \hat{f}, \hat{\sigma} \rangle| < ||\hat{f}||_{L^2} ||\hat{\sigma}||_{L^2} = ||f||_{L^2} ||\sigma||_{L^2}.$$

Thus there is unique $g \in L^2(G, H)$ such that

$$\langle f, \hat{\sigma} \rangle = Tf = \langle f, g \rangle$$

for all $f \in L^2(G, H)$, using the Plancherel formula in $L^2(G, H)$ (see VI.2) and the property of vector-valued pseudomeasure we conclude that for all $f \in L^2(G, H)$ the equality $\langle f, \sigma \rangle = \langle (\hat{f})^{\wedge}, \sigma \rangle = \langle \hat{f}, \hat{\sigma} \rangle = \langle f, g \rangle$ holds. Since $A_C(G, H)$ is dense in $L^2(G, H)$, obviously, $\langle f, \sigma \rangle = \langle f, g \rangle$ for all $f \in A_C(G, H)$ By definition in VI.3 we have $\sigma \in L^2(G, H)$.

The proof of theorem is complete.

References

- [1] Yu Shumo, the Fuurier Transform for Vector-Valued Functions, Chinese Annals of Math., 8A(3)(1987), 332-338.
- [2] Diestel, J.& Uhl, J.J.J.,., Vector Measures, Amer. Math. Soc. Providence Rhode Island (1977)
- (3) Larsen, R., An Introduction to the Theory of Multipliers, Verlag-Berlin. Heideberg. New York (1971) 97-100

(from 24)

Theorem 3 Let $\{X_n\}$ be a strictly stationary φ -mixing sequence of random variables with $EX_1 = 0$, $EX_1^2 < \infty$ and $\sigma_n^2 = ES_n^2 \to \infty$ as $n \to \infty$. If $\sum_{n=1}^{\infty} \varphi^{1/2}(2^n) < \infty$, then, without changing the distribution of $\{S(t)\}$ we can redefine $\{S(t)\}$ on a richer probability space together with a standard Wiener process $\{W(t), t \ge 0\}$ such that $S(t) - W(\sigma_t^2) = o((\sigma_t^2 \log \log t)^{1/2})$ a.s.

as
$$t \rightarrow \infty$$
. Where $S(t) = \sum_{i \le t} X_i$ and $\sigma_t^2 = ES^2(t)$.