Families of Semiopen Sets and Their Accompanied Topologies*

Zhu Jing feng

(Coal Economical Collage of China, Yantai)

Introduction Let (X, U) be a topological space. A set $s \subset X$ is called a semi-open set of U, if there exists $u \in U$ such that $u \subset s \subset u^-$, where u^- expresses the closure of u. The family $\varphi = \varphi_u$ of all semiopen sets of U is called the family of semiopen sets of U, and the topology U an accompanied topology of φ . The class of all the topologies on X generating the same family φ of semiopen sets is called a class of semi-homeomorphic topologies (in symbol $[\varphi]$), and $F(U)^{[2]}$ is the finest topology in $[\varphi]$.

S. G. Crossley, S. K. Hitderad^{[1]-[3]} and Yang Zhongqiang^[4] discuss the properties of semi-homeomorphic topologies. This paper investigates the structure of families of semiopen sets and the ralation between the inclusion of families of semiopen sets and the inclusion of their accompanied topologies.

§ 1 The structure of families of semiopensets

Theorem [.] A falimy φ of sets in X is a family of semiopen sets of some topology on X if and only if the following and satisfied

I φ , $X \in \varphi$.

 $\Pi \varphi$ is closed with union operation,

Proof Necessity. Let φ be a family of semiopen sets of some topology on X, by [4], F_{φ} is the finest accompanied topology of φ . Therefore, [, [], []] hold.

Sufficiency. Clearly, F_{φ} is a topology on X. We complete the proof by verifying that F_{φ} is an accompanied topology of φ . For given $s \subset X$ being a semionen set of F_{φ} , if $s = \varphi$, then $s \in \varphi$. Now assume $s \neq \varphi$, then for any $v \in F_{\varphi}$, $s \cap v \neq \varphi$, by [1], $s \cap v$ is also a semionen set of F_{φ} , Therefore, there exists a nonempty $u \in F_{\varphi}$ such that $u \subset s \cap v \subset u^{-}$. It follows by [1] that $s \in \varphi$.

Conversely, for nonempty $s \in \varphi$, since $s \cap X = s \neq \phi$, by I, II, there exists a nonempty $u \in F_{\varphi}$ with $u \subseteq s \cap X = s$. This shows that the interior s° of s is a nonempty

^{*} Received Dec. 31, 1986.

open set of F_{σ} . It only remains to show $s^{\circ} \subset s \subset s^{\circ}$.

For any $x \in s$ and $w \in F_{\varphi}$ with $x \in w$, since $s \cap w \supset \{x\} \neq \emptyset$, again by M, there exists a nonempty $s \in F_{\varphi}$ so that $\widetilde{s} \subset s \cap w$. This shows that $w \cap s^{\circ} \neq \emptyset$. Hence, $s \subset s^{\circ}$ implying that s is a semiopen set of F_{φ} .

With the same method in Theorem 1.1, we may obtain

Theorem 1.2 Let (X, U) be a topological space, then $s \subset X$ is a semiopen set of U if and only if $\forall v \in U$, $v \cap s \neq \emptyset$, $\exists u \in U \setminus \{\emptyset\}$ satisfying $u \in s \cap v$.

Theorem 1.1 shows that a family of semiopen sets in X could be defined by the operation of sets without any topological structure on X previously given.

We introduce a new concept.

Definition 1.3 We say a topology τ thick-contacts a family φ of semiopen sets (a topology U) or τ is a thick-contacting topology of $\varphi(U)$, if each non-empty element of $\varphi(U)$ contains a nonempty element of τ .

It is not difficult to verify the following gemi-topological property:

Proposition 1.4 Let φ and $\widetilde{\varphi}$ be families of semiopen sets in X, If there exists some $U_{\varphi} \in [\varphi]$ thick-contacting φ or some $U_{\widetilde{\varphi}} \in [\widetilde{\varphi}]$, then all topologies in $[\varphi]$ thick-contact $\widetilde{\varphi}$ and all topologies in $[\widetilde{\varphi}]$.

§ 2 Families of semiopen sets. From now on, we always denote by $\varphi(\widetilde{\varphi})$ a family of semiopen sets in X, by U (V) a topology on X and by φ_{τ} the family of semiopen sets in X of topology τ .

Lamma 2.1 If $\exists U_{\varphi} \in [\varphi]$ satisfying $U_{\varphi} \subset V \subset \varphi$, then $\varphi_{V} \subset \varphi$.

Proof Let $s \in \varphi_v$. Since $U_{\varphi} \subset V$, by Thegrem 1.2, for any $v \in U_{\varphi}$, $s \cap v \neq \phi$, there exists nonempty u in $V \subset \varphi$ such that $u \subset s \cap v$. Notice nonempty $u \in \varphi$ implying u is a semiopen set of U_{φ} , $\exists w \in U_{\varphi} \setminus \{\phi\}$ with $w \subset u \subset s \cap v$. It follows by Theorem 1.2 that $s \in \varphi$.

Theorem 2.2 (i) $F_{\varphi} \subseteq V \subseteq \varphi$ implies $\varphi_{V} \subseteq \varphi$.

- (ii) If $V \subseteq F_{\sigma}$, $F_{\sigma} \subseteq V$ and $\exists U_{\sigma} \in [\varphi]$ such that $U_{\sigma} \subseteq V \subseteq \varphi$, then $\varphi_{V} \subseteq \varphi$.
- (iii) [2] If $\exists U_{\varphi} \in [\varphi]$ with $U_{\varphi} \subset V \subset F_{\varphi}$, then $\varphi_{V} = \varphi$.

Proof (i) Utilize Lemma 2.1 and observe that V is not semi-homeomorphic to F_{φ} .

- (ii) By Lemma 2.1 and $\varphi_{V} \neq \varphi$.
- (iii) is an immediate consequece of Lemma 2.1 and Theorem 1.2.

Lemma 2.3 UCV implies $V \subset \varphi_U$ iff there exists a topology $\tau \subset U$ thick-contacting V.

Proof If $U \subset V \subset \varphi_U$, then by Definition 1.3, U thick-contacts V. Conversely, suppose $U \subset V$ and topology $\tau \subset U$ thick-contacts V. For each $s \in V$, $v \in U \subset V$, $s \cap v \neq \phi$, then $s \cap v$ is a nonempty open set of V. Notice that $\tau \subset U$ thick-contacts V implies that U thick-contacts V, there exists a nonempty $u \in U$ such that $u \subset s$

 \cap v. Consequently, by Theorem 1.2, s is a semiopen set of U or $s \in \varphi_U$.

Theorem 2.4 If $F_{\varphi} \subseteq F(V)$ and there exists $U_{\varphi} \in [\varphi]$ thick-contacting V, then $F_{\varphi} \subseteq \varphi_{V} \subseteq \varphi$.

Proof Clearly $F_{\varphi} \subseteq \varphi_V$. Since U_{φ} thick-contacts V, U_{φ} thick-contacts F(V). Observe $U_{\varphi} \subseteq F_{\varphi}$ and $F_{\varphi} \subseteq F(V)$, by Lemma 2.3, $F(V) \subseteq \varphi$. It follows by Lemma 2.1 that $\varphi_V \subseteq \varphi$ If $\varphi_V = \varphi$, then $F_{\varphi} = F_{\varphi_V} = F(V)$ contradicting the condition $F_{\varphi} \neq F(V)$. Thus, $\varphi_V \subseteq \varphi$.

Note | The conditions in Theorem 2.4 are also necessary (see Theorem 3.1). Lamma 2.5 Suppose $V \subset \varphi$. If $V \subseteq F_{\varphi}$, then $\varphi \subseteq \varphi_{V}$.

Proof Choose $s \in V \setminus F_{\sigma}$, denote $\widetilde{s} = s^{-/[F_{\sigma}]} \cup (s \setminus s^{\circ [F_{\sigma}]})$ where $s^{-/[F_{\sigma}]}(s^{\circ [F_{\sigma}]})$ denotes the complement (interior) of $s^{-}(s)$ with respect to topology F_{σ} . It is obvious that $\widetilde{s} \in \sigma$ since $s \in \sigma$. We complete the proof by showing that $\widetilde{s} \notin \sigma_{V}$. In fact, since $s \notin F_{\sigma}$, $s \cap \widetilde{s} = s \setminus s^{\circ [F_{\sigma}]} \neq \phi$. containing no nonempty open set in F_{σ} . Therefore, $s \cap \widetilde{s}$ containing no nonempty set in $V \subseteq \sigma$. Thus, by Theorem 1.2, $\widetilde{s} \notin \sigma_{V}$.

Theorem 2.6 Assume $F(V) \subseteq \varphi$, then the conditions (a) $F(V) \subseteq F_{\varphi}$, $F_{\varphi} \subseteq F(V)$ and (b) V thick-contacts some $U_{\varphi} \in [\varphi]$ imply $F_{\varphi} \subseteq \varphi_{V}$, $\varphi_{V} \subseteq \varphi$ and $\varphi \subseteq \varphi_{V}$.

Proof The assertion $\varphi \subseteq \varphi_V$ follows immediately from Lemma 2.5 since $\varphi_{F(V)} = \varphi_V$. If $F_{\varphi} \subseteq \varphi_V$ then the relation of F_{φ} , φ_V and $F_{\varphi_V} = \varphi$ will satisfy the condition of Lemma 2.5, therefore, we will have $\varphi_V \subseteq \varphi_{F_{\varphi}} = \varphi$. Thus, to finish the proof, it is sufficient to show $F_{\varphi} \subseteq \varphi_V$.

For given $s \in F_{\varphi}$, $v \in F(V) \subset \varphi$, $s \cap v \neq \phi$, by Theorem 1.2, there exists non-empty \widetilde{u} in F_{φ} such that $u \subset s \cap v$. Since V thick-contacts U_{φ} , there exists nonempty \widetilde{u} in F(V) with $\widetilde{u} \subset u \subset s \cap v$. It follows by Theorem 1.2 that $s \in \varphi_{V}$. This means that $F_{\varphi} \subset \varphi_{V}$.

Note 2 The conditions (a) and (b) in Theorem 2.6 are also nenessary (see Theorem 3.2).

Theorem 2.7 Suppose 1° $V \subseteq F_{\varphi}$; 2° V contains no accompanied topology of φ and 3° V thick-contacts some $U_{\varphi} \in [\varphi]$. Then (1) $\varphi \subseteq \varphi_{V}$ and (2) $F(V) \subseteq \varphi$.

Proof By 3° and Proposition 1.4, V thick-contacts F_{φ} . It follows by 1° and Lemma 2.3 that $F_{\varphi} \subset \varphi_{V}$. Consequently, from Lemma 2.1, we have $\varphi = \varphi_{F_{\varphi}} \subset \varphi_{V}$. Therefore, by 2°, (1) holds.

For $s \in F(V)$, $v \in F_{\varphi}$, $s \cap v \neq \phi$, since $F_{\varphi} \subset \varphi_{V}$, by Theorem 1.2, there exists a nonempty u in F(V) such that $u \subset s \cap v$. Hence, there exists a nonempty $\widetilde{u} \in V \subset F_{\varphi}$ such that $\widetilde{u} \subset u \subset s \cap v$. It follows by Theorem 1.2 that $s \in \varphi_{F_{\varphi}} = \varphi$. Thus, $F(V) \subset \varphi$. Again by 2° , we obtain $F(V) \subseteq \varphi$.

Note 3 In Theorem 3.3, we will show that the conditions 1° , 2° and 3° in Theorem 2.7 are also necessary.

§ 3 Accampanied topologies Throughout this section, we always denote by

 U_{φ} and $U_{\widetilde{\varphi}}$ two accompanied topologies of φ and $\widetilde{\varphi}$ respectively.

Theorem 3.1 Suppose $F_{\varphi} \subseteq \widetilde{\varphi} \subseteq \varphi$, then (i) $U_{\widetilde{\varphi}} \subset F_{\varphi}$, (ii) $F_{\varphi} \subseteq F_{\widetilde{\varphi}}$ and (iii) U_{α} thick-contacts $U_{\widetilde{\varphi}}$.

- **Proof** (i) If $U_{\widetilde{\varphi}} \subset F_{\varphi}$, then by Lemma 2.1, $\varphi = \varphi_{F_{\varphi}} \subset \widetilde{\varphi}$, a contradiction.
- (ii) If $F_{\varphi} \subseteq F_{\overline{\varphi}}$, then by Lemma 2.5, $\widetilde{\varphi} \subseteq \varphi_{F_{\varphi}} = \varphi$, also a contradiction.
- (iii) follows by $\mathbf{F}_{\boldsymbol{\varphi}} \subset \widetilde{\boldsymbol{\varphi}}$ and Proposition 1.4.

Theorem 3.2 Let $F_{\widetilde{\varphi}}\subseteq \varphi$, then conditions $1^{\circ} \varphi \subseteq \widetilde{\varphi}$, $\widetilde{\varphi} \subseteq \varphi$ and $2^{\circ} F_{\varphi} \subseteq \widetilde{\varphi}$ imply (i) $F_{\widetilde{\varphi}}\subseteq F_{\varphi}$, $F_{\varphi}\subseteq F_{\widetilde{\varphi}}$, (ii) $U_{\widetilde{\varphi}}$ (U_{φ}) thick-contacts $U_{\varphi}(U_{\widetilde{\varphi}})$.

- **Proof** (i) If $U_{\widetilde{\varphi}} \subset F_{\widetilde{\varphi}}$, then by Lamma 2.1, $\varphi = \varphi_{F_{\varphi}} \subset \widetilde{\varphi}$ contradicting 1° . The fact $U_{\varphi} \subset F_{\widetilde{\varphi}}$ is verified similarly. Hence, (i) holds.
- (ii) follows immediately from $U_{\varphi} \subset F_{\varphi} \subset \widetilde{\varphi}$ and $U_{\widetilde{\varphi}} \subset F_{\widetilde{\varphi}} \subset \varphi$ and Proposition 1.4.
 - **Theorem 3.3** Assume $\varphi \subseteq \widetilde{\varphi}$ and that there exists $U_{\widetilde{\varphi}} \subseteq \varphi$, then (i) $U_{\widetilde{\varphi}} \subseteq F_{\varphi}$,
- (ii) $U_{\widetilde{\varphi}}$ contains no accompanied topology of φ and (iii) $U_{\widetilde{\varphi}}$ thick-contacts U_{φ} .

 Proof (i) follows directly from Lamma 2.5.
 - (ii) Observe $\varphi \subset \widetilde{\varphi}$ and (iii) of Theorem 2.2, clearly $U_{\varphi} \subseteq U_{\widetilde{\varphi}}$ for any $U_{\varphi} \in [\varphi]$.
- (iii) Since $U_{\widetilde{\varphi}} \subset F_{\varphi} \subset \widetilde{\varphi}$, by Lemma 2.3, there exists a topology $\tau \subset U_{\widetilde{\varphi}}$ thick-contacting U_{φ} . Therefore, $U_{\widetilde{\varphi}}$ thick-contacts U_{φ} .

References

- [1] S. G. Crossley and S. K. Hitderad, Fund. Math., 74(1972), 233-253.
- [2] S.G. Crossley, Proc. Amer. Math. Soc., 43(1974), 416-420.
- [3] S.G. Crossley, Proc. Amer. Math. Soc., 72(1978), 409-412.
- [4] Yang Zhongqiang, Chinese Scientia Sinica, 7(1984), 388-390.