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Introduction Let (X, U ) be a topological space. A set sCX is called a semi-
open set of U, if there exists ueU such that uCsCu~, where u~ expresses the clo-
sure of u. The family ¢ =@, of all semiopen sets of U is called the family of
semiopen sets of U, and the topology U an accompanied topology of ¢, The -
class of all the topologies on X generating the same family ¢ of semiop’e'n sets
is called a class of semi- homeomorphic topologies (in symbol [¢]), and F(U)
is the finest topology in [¢].

S.G. Crossley, S.K. Hitderad" ! 77 0®? and Yang Zhongqiang[“ discuss the
properties of semi-homeomorphic topologies. This paper investigates the structure
of families of semiopen sets and the ralation between the inclusicn of families
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of semiopen sets and the inclusion of their accompanied topologies.

§ | The structure of families of semiopensets

Theorem |.,] A falimy ¢ of sets in X is a family of semiopen sets of some
topology on X if and only if the following and satisfied

I o, Xc¢op.

I ¢ is closed with union operation,

Il ¢={sCX: v veF,, s(\v¥é, ueF,\ {4}, uCs(\v}.
where F = {vep, ysep, v(\sep},

Proof Necessity. Let ¢ be a family of semiopen sets of some topology on X,
by [ 4], F, is the finest accompanied topology of ¢. Therefore, I, I, T hold.

Sufficiency. Clearly, F, is a topology on X. We complete the proof by ve-
rifying that F, is an accompanied topology of ¢. For given sCX being a semi-
open set of F,, if s=¢, then se ¢. Now assume s#¢, then for any veF,, s(\v+£¢,
by [ 1], s(\v is also a semiopen set of F,, Therefore, there exists a nonempty
u€F_ such that uCs(\vCu~. It follows by Il that seg.

Conversely, for nonempty se€@, since s(1X=s#¢, by I, I, there exists a
nonempty u€¢F, with uCs(1X=s. This shows that the interior s° of s is'a nonempty
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open set of F, . It only remains to show s°CsCs°".

For any xe¢s and weF, with xew, since s(1w D {x}#¢, again by T, there
exists a nonempty seF, so that §Cs(1w. This shows that w()s*4¢. Hence, sC
s’ implying that s is a semiopen set of F,.

With the same method in Theorem 1.1, we may obtain

Theorem |.2 Let (X, U) be a topological space, then sCX is a semiopen
set of U if and only if yveU, v(Is¥#é, JueU \ {4} satisfying ues(v.

Theorem 1.1 shows that a family of semiopen sets in X could be defined by
the operation of sets without any topological structure on X previously given,

We introduce a new concept,

Definition | .3 We say a topology 7 thick-contacts a family ¢ of semiopen
sets (a topology U ) or 7 is a thick-contacting topology of ¢(U), if each non-
empty element of @(U) contains a nonempty element of 7. e

It is not difficult to verify the following gemi-topological property.

Proposition |.4 Let ¢ and @ be families of semiopen sets in X, If there
exists some (,¢ [¢] thick-contacting ¢ or some ;¢ [@], then all topologies in

[¢] thick-contact ¢ and all topologies in [@].

§ 2 Families of semiopen sets. From now on, we always denote by ¢ (@)
a family of semiopen sets in X, by U (V) a topology on X and by ¢, the family
of semiopen sets in X of topology 7.

Lamma 2.| If 3 U, elg] satisfying U,CVCeo, then ¢, Co.

Proof Let s¢g@y. Since U,CV, by Thegrem 1.2, for any veU,, sﬂvviab, there
exists nonempty u in V(¢ such that uCs[)v. Notice nonempty ue¢ implying u
is a semiopen set of U, IweUN {4} with wCuCs(\v. It follows by Theorem
1.2 that seg.

Theorem 2.2 (i) F,; VG ¢ implies o C o,

(ii) If V§F,, F,&V and 3 U [¢] such that U, CVCg, then ¢,C¢.

(ii1)023 f aU,e[p] with U,CVCF,, then ¢y=9¢.

Proof (i) Utilize Lemma 2.1 and observe that V is not semi-homeomorphic
to F_.

(ii) By Lemma 2.1 and ¢,F¢.

(iii) is an immediate consequece of Lemma 2.1 and Theorem 1.2,

Lemma 2.3 UCYV implies V¢ iff there exists a topology rCU thick-con-
tacting V.

Proof If UC Vg, then by Definition 1.3, U thick-contacts V. Conversely,
suppose UC V and topology CU thick-contacts V. For each seV, veUCV, s
v#¢, then s(\v is a nonempty open set of V., Notice that 1 U thick-contacts
V implies that U thick-contacts V, there exists a nonempty ue¢ U such that uCs



MNv. Consequntly, by Theorem 1.2, s is a semiopen set of U or seg@.

Theorem 2.4 If F,CF(V) and there exists U,e[p] thick-contacting V, then
F,Colo. .

Proof Clearly F,C¢,. Since U, thick-contacts V, U, thick-contacts F(V) .,
Observe U,CF, and F,CF(V), by Le mma 2.3, F(V)Ce¢. It follows by Lemma
2.1 that ¢, Co If ¢,=¢, then F,=F, =F(V) contradicting the condition F,==F (V).
- Thus, ¢,Co.

Note | The conditions in Theorem 2.4 are also necessary (see Theorem 3,1).
Lamma 2.5 Suppose VU ¢, If VEF,, then ¢o& oy.
Proof Choose seV \ F,,denoet s = s7tFU (s\s''™) where s~

complement (interior) of s(s) with respect to topology F,. It is obvious that Sep

F ol F
C '](s[ ']) denotes the

since se 9. We complete the proof by showing that S&¢,. In fact, since s& F,,
sﬂ§=s\so[F’];t¢. containing no nonempty open set in F,, Therefore, s(\S con-
taining no nonempty set in V since VC¢. Thus, by Theorem 1.2, E&wv.

Theorem 2.6 Assume F(V)C_g, then the conditions (a) F(VWWKF,, F,&F(V)
and (b) V thick-contacts some U,¢[¢] imply F,Coy, ¢,&¢ and oK oy.

Proof The assertion ¢& ¢, follows immediately from Lemma 2,5 since @gy, =
¢y. If F,C oy then the relation of F, ¢, and F, =¢ will satisfy the condition of
Lemma 2.5, therefore, we will have q)v&cpﬁ =¢. Thus, to finish the proof, it
is sufficient to show F,Coy.

For given seF,, veF(V)C¢p, s(1v#¢, by Theorem 1.2, there exists non-
empty U in F, such that uCs(\v. Since V thick-contacts U,, there exists
nonempty u in F(V) with uCuCs/\v. It follows by Theorem 1.2 that segp,,
This means that F,Co,.

Note 2 The conditions (a) and (b) in Theorem 2.6 are also nenessary (see
Theorem 3.2).

Theorem 2.7 Suppose 1° VCF,; 2° V contains no accompanied topology of
@ and 3° V thick-contacts some U, [@]. Then (1) ¢Ceoy and (2) F(V)Lo.

Proof By 3° and Proposition 1.4, V thick-contacts F,. It follows by 1° and
Lemma 2.3 that F,Cgy. Consequently, from Lemma 2.1, we have ¢=¢, Coy.
Therefore, by 2°, (1) holds. ’

For s¢ F(V), veF_, s(\v+#é, since F gy, by Theorem 1.2, there exists a
nonempty u in F(V) such that uCs()v. Hence, there exists a nonempty uevC
F, such that WCuCsNv. It follows by Theorem 1.2 that se¢ @g, =9 . Thus, F (V)
Ceo. Again by 2°, we obtain F(V)Co.

Note 3 In Theorem 3.3, we will show that the conditions 1°, 2° and 3° in
Theorem 2.7 are also neoessary,

§ 3 Accampanied topologies Throughout this section, we always denote by



U, and U; two accompanied topologies of ¢ and & respectively.

Theorem 3,| Suppose F,C 9 C ¢, then (i) U, KF,, (i) F,CF; and (iii)
U, thick - contacts Us.

Proof (i) If U;CF,, then by Lemma 2.1, ¢=¢F’C @, a contradiction.

(ii) If F,&F; then by Lemma 2.5, ¢ K¢p =@, also a contradiction.

(iii) follows by F,C ¢ and Proposition 1.4:

Theorem 3,2 Let F,Cg, then conditions 1° ¢& 9, ¢ K¢ and 2° F,Cg
imply (i) F;&F,, F.QF; (ii) U; (U,) thick-contacts U, (Up .

Proof (i) If U;CF;, then by Lamma 2.1, ¢ =9 C ¢ contradicting 1°. The
fact U, & F; is verified similarly . Hence, (i) holds’.

(ii) follows immediately from U,CF,C @ and U;_F; ¢ and Proposition
1.4, _

Theorem 3.3 Asume ¢ _ ¢ and that there exists U,Co, then (i) U;CF,,
(ii) U, contains no accompanied topology of ¢ and (iii) U, thick-contacts U,.

Proof (i) follows directly from Lamma 2.5,

(ii) Observe ¢ ¢ and (iii) of Theorem 2.2, clearly U,&U; for any U e[ o],

(iii) Since U;C F,CGJ’, by Lemma 2.3, there exists a topology 1 Uy thick-
contacting U,. Therefore, Uj thick-contacts U,.
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