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] . Introduction The logistic distribution with density
f) = j;_x)z for —co<x<oo (1.1)

has been widely used by Berkson (1944), Berkson and Hodges(1960) as a model
for analyzing bioassay and other experiments involving quantal response, by
Pearl and Read(1920) in studies pertaining to population grbwth,and by Plac-
kett (1959) in connection with problems involving censored data.

Gumbel (1961) Proposed two bivariate logistic distributions with logistic
marginals—Type 1 being

—(x+p)
2e 77

(1l +e™+e™”)?

flx, y) =

for ~co<lx, y<oco (1.2)

and Type I belonging to the Morgenstern type. Gumbel Type 1 distribution
appears to be a natural generalization of the univariate logistic distribution an
and it (the multivariate form) has been studied by Malik and Abraham (1973).

In this paper, a class of multivariate distributions including the Gumbel
Type I distribution is considered, with the property that marginal distributions
are of univariate form, and discussed on some distributional properties. In
particular, sufficient conditions of this class are given .

2 . Notation and Preliminary Results In this paper, we use the notation X~
N (4, 0%) to indicate that X is a random variable distributed as N(u,0?).If X
and Y have the same distribution, we write X-2Y . We call x(n x1) having
spherical distribution if figg for each T'eO(n) (O(n) denotes the set of nXxn
orthogonal matrices) denoted by x~S,(p), where ¢ (') is x's c.f.(character
teristic function) . - -

The following are noteworthy.We set these results to be used in the sequel.

2.1. Suppose Z***»Z , ,,are independent random variables having Gamma
distributions G (a,), +; G(a, .p, where the density of G(u) is f(x) =x" e™/I (1)
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m+1

for x>0 and f(x)=0 otherwise.Let Y,=Z,/( 3 z;) i=1,.e,m. Then (Y;, -, Y,)
1

is called having m-variate Dirichlet distribution and denoted by symbol Dd(a,,

. ""amiam+1) or (Yy,e, Y, Y nyy) ~Dlay, e, a,,a m ), where Y,y =1~ ZY
i=1

2.2, If (Yy,e00,Y,, Y. )~D(a,,s,a,.),then the joint density of (Y,

Y,) is given by

Y

F(Za' m m m

a, -1 am+1_1 s
m+1 ny" (1—2}’1) ’ yi>0’l—1,’"’m, 2y1<11
I‘Ir(a') i=1 i=1 i=1

1
where a,>0, i =1,ee,m+1.
2.3- If (Yl’...’YM)~D(a1”",

Qps @ mey) and ry eee r, are integers such that
0 <r;<eee <r,=m+1, then

r £ T,
(Z Yl9 z: Yl’ hadd’ 2 Yl) ~D(Zal9 Z Ay "oy Z: a, ) .
i=1 r.+1 -1 t1 r +1 re-1t+1

3 . Definition If (Y,,---,Y,,,+1)~D(a,,m,a,,,+1).Let

Ym+
X, =log Y.l, P= 1,00, m. (3.1)

i

Then distribution of random vector (X,,.,X,) is called DL-distribution and
denoted DL(a,, s, a2 4+ .

According to definition, we may compute density function of random vector

(X, e, X,).Since (Yy, v, Y n.y) ~D(a,, e, a ) then the density of (Y, e ,

Y,) is (2.1).Let transformation (3, 1), therefore

-x
e ! .
Yl T, [ = ],ee,m
m

b
1+ Y e ™
_le

1
and the Jacobian of transformation from (Y, , s, Y,) to (X,,,X,) is e ' /

(1+ Ze 3"*1, We obtain the joint density function of (X,e,X,) as follows:

m+ 1
m+1

e
(F(Za,)/HF(a,))(exp(-Zax)/(1+Ze Ty o)
i=1 i=t
m+ i
=(l"(a)/I_IF(a,))(exp(—Zax)/(1+ Ze X)) for —co<lx;<oo, j=1,ee,m
ji=1 ji=1

where a=a; tee +a oy, a; >0, j=1,0e,m+1.

When o, =a, =« =a,=a n,+;=1, (3.2) becomes the result of Malik and
Abraham (1973)—multivariate logistic type [ distribution.

4 . Some Properties of DL (a,,*-,a,a ,.,) Using definition and preliminary
results in section 2, we get the following properties of DL (a;, see, d p3 @ i+ )
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Theorem4.| Suppose Y,,., Y,  are independent random variables having

z Gamma distribution G(a,), -, G(a,,,). Let X,=loe(Y,,,/Y,), i =1,.,m. Then
(Xy, 00y, Xp) ~DL(ay, eer, apm am...l) .
Proof Let Z,=Y,/(Y, +eee +Y, ), i=1,e,m. Then (Z,, «.,Z,) has the m-
variate Dirichlet distribution D(a,, - ,a,4a,, ) .According to definition of
DL -distribution, we obtain that
m L
Qog((1 = "Z)/Z)),eee, log((1 - Y_Z,)/Z,) ~DL(a;, s, 0 p A1) -
1 1
However
m
log((1-32Z,)/Z) =108(Y /Y
1
for i= 1‘,-", m, therefore, (X, e, X, )~DL(a,, s, apa,,).
‘Theorem 4.2 If m-variate random variable (X,,.., X,) has DL-distribution
~ DL(a,,++,ap;apn,,), then the marginal distribution function of (X, ,X,) (n<
<m) is that of a n-variate DL-distribution DL(a,, s, apsap,) .
Corollary | If (X, -, X, )~DL(a,,+s,a,3a,.,), then X,~DL (a3 a,,,) for
i=1,0ee,m.
Corollary 2 If (X,,e,X,) ~DL(ay, -, a, ap1), then (X, «oe, X; {, X;, 1, oo,
s, XM) ~DL(al,"',a J-1 a}+l’ eoe, am;am+l) t‘or J = 1,--0’ m.
The proofs of Theorem 4.2 and Corollaries are very easy, hence they are
omitted .,
Theorem 4.3 If (X, ., X,)~DL(a,,+,a,;an,,), then (X, -X,, X,-X,,
oy Xy =Xy =Xy Xy 7 Xy e, Xpg = X)) ~DLAay, 000, @ jo gy Byt @pas s Qs @)
Proof Since (X,,+.,X,)~DL(a,,,a,;a,,,), then
| (Xy, vy Xp) = (108(Y 1 /Y}), w00, 108( Y1 /Y)),
where Y, has Gamma distribution G(a,),i=1,se, m+ 1, Therefore, (X, -Xj, e
o, X, = X=X, X1~ Xy 000y X — X)L (10g (Y, /X)), o0, log(Y,/Y,),
108(Y /Y 1), 108 (Y, /Y, 1), 00, 108(Y /Y, )) ~DL(a,,eee,a; |, Qp, , @, a”",.af) .
Theorem 4.4 If (X,,++,X,) ~DL(a,,%,a,;a,,,).Let Z;=X;+log(1+ 3
1
n
e X, j=n+1,ee,m, then (Z,, o0, Z,) ~DL(a,, 1,5, @ps apn, + Yla,).
1
Proof Since (X,,«-,X, ) ~DL(a,,,a,;a,,,), then
(Xy, 00y X)L (108 (Y1 /Y, 000, 108 (Y01 /Y,0))
where (Y,, e, Yp, Yo.)) ~D(ay, e, am ap,), Yu1=1- 5.Y,. Therefore,
1
n n
. (Ziprs ey Zo) LU0 (CY gy + 1Y) /Y1), 000, 108 ((Y i + 1Y) /YD)
1 1
m m
=(log((1— YD) /Y, 1)y, log((1 - 3Y,)/Y,))
n+1 n+1
— 93 —
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n
~DL(an+19 *00y A3 Ay + Zal) .
1

Corollary | If (X,, ., X, ) ~DL(a,, s+, apsa,,,), then
m-1 _x
X,tlog(1-3 e ™) ~DL(a,,a—a,)
T

m+1
and is independent of (X,,«.,X, ,), where a =Y a,.
1
Theorem 4.5 If (X,, e+, X,)~DL(a,,+,a,3a,,;) and is distributed inde-
pendently of Y~DL(a; 8) and if a=a, ++s +a,,,, then

(X, +log(l+e"(1+ ie*x’)),m,X,,,+log(1+eY(1+ Ze'xl)))
1 1

is distributed according to DL(a,,«-,a,3a,.,+8).

The proof can be easily obtained by the method of computing density.
Hence it is omitted.

Theorem 4.6 If x~S,(p) (spherical distributions with characteristic func-

tiong), partition x as follows,

X n,
x: - -
= : :
(m+1)
,’S nm+l

and P(£=Q) =0.Let Y, :log(i(m+1);x’(m+1)/£(i)%'(i))’i: {,+s, m.Then
(Yy,00, Y,)~DL(n, /2,000, n, /251, ,/2).
Proof Since x~S,(p) with P(x=0) =, therefore we have
(f“&”’/x/x, N ™% ™ /3’ x) ~D(n /2,5 0, /250, 1 [2).
Put N - T T
Yl:log(f+l)i(m+1)/£(i):xv(i)), i=1,0., m.
According to the definition of DL-distribution, we obtain the result, i.e
Y,) ~DL(n, /2, %, n,/2 n,, ,/2).
Theorem 4.7 If x~S,(¢p) with P(x=0) =0,and A, is idempotent matrix

Y YY)

.y 1 ’

with é,§,=0 for any i#j,i=1,e.,m, Let Yj=log(£’ém,£/£’éj£), J=1,00e, m,
" -

where x"A, x=1- Y x"A;x, then
=~ I~

(Yoo, Y,) ~D(ny /2,000 0, /20, ,/2).
Proof Since x~S,(p) with P(x=0) =0, then (x'Ax, -, x" A, x)5R(d}, -,
e, d2), where (d}, e, d2)~D(n,/2, -~-,~n,,,/2; n,../2). Therefore
(Y, e, Y,,) = (log(x" Ay 1 x/x" AX), ooe, log(x A,m{/x’ A, x)

2 (log((1 - 32d2) /d}), w, log((1 - S°dD)/d2))
1 1
~DL(”I/2’ o*y nm/25 ”m+l/2) .
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‘ r
Theorem 4.8 If (X,,-, X,) ~DL(a,,*,a,3a,,,).Let Z,= —log t e x,,
ri.tl
J=1,e0s, 5, where (=ry<r,<eee<lr,=m, then (Z,, +-,Z,) has the s-variate DL-

r

r, 2 m
distrbution DL (;a,, 3 s, X agsan).

r+1 r,atl1

Proof Since (X, ., X, ) ~DL(a,,+,a,5a,,,). therefore
(Xyyve0, X ) £ (10B(Y 1 /Y1), 000, 108(Y 1 /Y )
where (Y, +.,Y,) has the m-variate Dirichlet distribution D(a,,...,a,,,;a,,ll,),
Y, =1-(Y, +e +Y,).Then
(€ Xt v, e VLY /Y oo Yo /Yot

4

(te—x‘, % e~x”.”’ i ehx')—;d—(rﬁyi/Ynul’
1

1 rn+1 r.atl

r m
“ Y Yooy & Y /Y0

n+1 r,_,+1

r r m )
Since (37Y,, 3 Y, +., 3. Y,) has the s-variate Dirichlet distribution
1 1

ry+ roatl

rl r m . - . - -
D(3} a,, 2:‘3‘1”'", S° agsa,,,) (according to preliminary result 2.3 in section
1 rn+l r_,+1

-1

tion 2) . Therefore,

r r m
(Zy,+, Z,)~DL(Ya,, 3 a,,o, 3 @3amy)
1

r‘+1 ’s,1+1

which completes the proof .
Corollary | If (X,, -, X,) ~DL(a,,,a,;a,,,), then

-log )m:e'x’~DL( Sajsan,).
1 1

Theorem 4.9 If (X,,.., X,) ~DL(a,,,a,;a,,,;), then moment generating
function is given by

M ty) = Fns ; X m [la,—1)
(t, 000, t,) = r(a’”l) 1l_=11 T (a,)

as a sequel

_T(a,.) )
EX) =G, 0 TT@ .
' T, T r'da,.) I’ (a,)
var(Xy) =S ey T, ER)
" r’ )2
- cov(X,, X,) = LIRCPIY) @ , for i+j

(a,,,) TI(a,,,)
where I''(a) and I'"(a) are the first and the second derivatives of the gamma
function T(X) evaluated at the point x=ga.
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Proof This follows by applying definiiion and properties of the moment
generating function. The details are omitted.
Theorem 4.0 If the prior distribution of (X,, -, X,) is DL-distribution

DL(a,,,apn; a,,,) and if

P(X=jlxl""9 Xm) :e_x’/(l + Em:e‘x') a,s for j= 1,00, m,
1

m
P(X=m+1]X,, s, X)) = 1/(1+ Se X a.s
1
then the posterior distribution of (X,,..,X,) given X = is DL(a,”’, m,a,,(,j)

N j)
a ), where

" l/=a, ifizj o
a,.j < . for j,j=1,es,m
I =a,,, if i=j
and )
(m+1) _ . (m+1) _
a; =a;, for [=],00e, m, [P Sam,t1.

Proof According to the condition of theorem, we obtain

f f(‘j,Xl’...’Xm)n(xl,...,xm)ITIdxi
x 1

iz, m

m+ 1 _ mo_ . - Eul,\-/ m —x @ m
| r@/TIrem e™/a+ e e /a+ e ™)) []dx,
X, 1 1 1 1

1'...‘ m

i=

m+1 m+ 1
= @)/ I T[] ) Tle,;+1)/Ta+ 1)), for j=1, e, m
i A ‘
¢ m+ |
where a= Y a,, n(x,,+-, x,) denotes the joint density function of (X;,,X,)
1
~DLta, . s a,,,) . Thercfore, we obtain
f(j,xl.-..’xm)”(x“u., xm)

f(jyxl,..'9 X )7 (Xy, oo, X,,,) [”![dx’
i

T(xX,, e, Xp|Xx=j) =

X, 1Kigm m
m+1 ’ _ X T.Iax m a
=(T(a+ 1) /T(a,+ D [T @) (e @ Ve &) (1+ 3 e )"}
itj 1

that is, the posterior distribution of (X, e, X ) given X =j is DL{(a,,¢,a,,,
QL Ay Ay y) for j=1,ee, m,

Using the.'same way, we may obtajn result when j=m+1,

5. Sufficient Conditions of DL-distribution Fabius(1972), (1973) have
studied the relations between Dirichlet distribution and “neytrality”. In parti-
ticular, Fabius(1973) have found two equivalent conditions of Dirichlet distri
bution. In this paper,since DL-distribution is defined by using Dirichlet distri-

bution, naturally, we may think what is equivalent conditions of DL-distribution.

— Y% —
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. Unfortunately, so for we can not find equivalent conditions . We have found
sufficient conditions of DL-distribution, First we define some concepts ,
Definition 5.] x=(X,, -, X,) is (CM),-exponential neutral for a given
i€{1,-, m} iff, for any integers r,>>0,j7 i,there is a constant ¢,such that
m sor
B([[e"™Xp=cll+e ™) " a.s.
J#i :
Definition 5.2 x = (X,, -, X,,) is (DR),-exponential neutral for a given
ie{1,ss, m}, for any integers r>>(,there is a constant ¢, such that
E(e™™|X,, j#i)=c(1+ Y e Xy, a.s,
Jti
Proposition If x is nondegenerate, consider the following statements,
(i) x is (CM),-exponential neutral for all i;
(ii ) x is (DR),-exponential neutral for all i,
( iii ) The distribution of x is a DL-distribution or a limit of DL-distri
bution.
Then we have assertion (ii )=>(i)=(iii)
Proof The assertion follows from Lemma 5.2 and Lemma 5.3 below. To
simplify the notation we write
e i) = Z e—,v,’ e i = Z e
J#i igl
for any ie{1,eee, m}, IC{1,ees, m}

Lemma 5.1 (ij) implies, for any proper subset I of {1,«e,m}, any iel,

and any integer r>>0, the existence of constant ¢, such that
E(e™™X,, jgD=c(1+e )" a.s.

Proof We proceed by induction with respect to both |I], i.e., the number
of elements of I,and r.Let H, , be the induction hypothesis that the assertion
holds for any set I with |I|<k and any r<s. Note that H,,, and H, , are
trivially true for any r>>0 and ke{1,ee,m-1}.Thus we only need to show that
H,,,, and H, ,,, together imply H,, ,, ., for any r>0, ke{1,e., m—2}. To do
this, we must fix a set I with |I|=k+1 and ic¢I.However, without loss of
generality we may set i=1, I1={1,«., k+1}.Because of H, ,., we know there
is a constant ¢, such that

E(e ""VXX,, J&D =E(E(e™ " VXX, i>k) X, ja D 5.1
=¢,E(Q1 +e’-x'+e‘x‘°')’+‘|Xj., J&D a.s
Moreover, taking expeciations, we see that 0<c, <1 or ¢;>1,
Expanding the (1 +¢ X1+ Xy jn (5.1) and using H, , ,. we obtin
E(e™ " "VXIX,, j&D) =c,B(e” VXX, j& 1)

+cy(L+e Xy gy s, (5.2)
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where ¢, is a constant. In the same way we can show the existence of cons
tant ¢; and ¢} with 0<Cc| <1 or ¢{>1 such that
E(e” “"PX0X, jgD = c{E(e” "TVNIX, j&D + (1 +e D™ 45 (5.3)
Substitution of (5.3) in (5,2) yields
- cch+ec _
E(€ (r+l)x||Xj’ j& I) :—ll-:ZCl—CI’Z—-(I +e Xl)rH’a-S
and the lemma is proved,
Lemma 5.2 - (ii ) implies,for any proper subset I of {], e, m} and any
integers r, >0, ie¢l, the existence of a constant ¢, such that
V -rX . -X “Zir,
E([]e NX;,ieD=c(l+e ™ a.g.
iel
Thus in particular ( ji ) implies(i)
Proof We again use induction on|i|, the assertion being trivially true for

sets I with [I]=1, Hence we start out from the assumption that the assertion

holds for all sets 1 with [l|_<~k' for a given A<<m-2, and we fix a set 1 with
|l|:k+1.As before we put 1={1,.., kK + 1} without loss of generality . Our
assumption guarantees the existence, for any integers r,>>0,i¢l, of a constant
¢, such that
-rX . —re X ko X . .
E('Ule X, j& ) = E(e™ ™ ‘~'E(I_1[e X, ik X, & D

L
r
X T

. =cE(e Mo+ e e XenTX  je D a.s.

¢
yor
'I

Expanding (1 +e “+¢ )7 "and applying Lemma 5.1 we obtain the desired
result .

Lemma 5.3 (i) implies ( iii)

Proof = For arbitrary distinct i, je{l,+s, m} and any integers r, s>>0,the
(CM), and (CM);-exponential neutrality implies

E(e Xe™n B +e ™y B +e ™

E(e “NE(e %)  E(e *9B(1+e *  E(e XHE( +¢& )"
In particular it follows that qu(e_x'(l+e'x'))/(E(e"x')E(1+e'x')) does not

(5.1)

depend on i. If either g=] or ¢ =co one easily verifies that the distribution
of x is a limit of DL-distribution. In all other cases q>1,we then define a,
@y, e, d,, ~0,put g=aj/(a=1) a;}r,a,zaE(e_x’) for i=1,se,m., It now turns

=g +1.We
first show that all mixed monents can be expressed in terms of marginal mo

- 3 . . -X -X
ments, or, more precisely, that for any i, any mixed moment of e "' see, & ™!

out that the distribution of x is the DL(a,, ¢, 2,54, ), where a

myl

can be expressed in terms of marginal moments of these same random varia

bles.This follows by induction on i.It is trivially true for izl,‘and for any
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i<m-1 we have

' E He";x/ _
LA 1 - X L,

E I_I e "= E(e T Iol(1+e~xl.l)l )
j=1

E(1+e X1
by the (CM), ,-exponential neutrality ,
It remains to be shown that the marginal moments of the e X' have the
right value. This is in fact true for the first moments by the definition of the
» ¢; . Supposing it to be true for all moments of order not exceeding a given

i>1,we may use (5.4) to obtain

E(e ™)E(1+e X
E(e )E(]l +e )"

E(e X (1+e %) = E(e “(1+e

Ny (5.5)

and

E(e” " VX EQ +67%)2
E(e 2 )E(1+e )

for arbitrary distinct / and j.Adding (5.5) and (5.6) we obtain an expression

for E(e " V% (1 +e ™) involving E(e”“**) and moments of order not ex
-(r+1)X

E(e'(f“l)x,(l +()*X')2) —

E(e X1 +e7 %) (5.6)

ceeding r., Up to its sign the coefficient of E(e Y in this expression is

given by
E(e " "X EQ +e®)2  E(eTME(I+e ™™
E(e 2*)E(1 +e )2 E(e X)E(1 +e )7

_ a;(a;+1)ess(a;+r—2)(u+ay,) {a+a,.——1 N a,+r—1 } -0
B 0,(a+d,)°'°(a+aj—r+2) aj+1 a+al__r+1 -

-(r+1)X

and hence does not vanish, Thus we can solve for E(e )}, expression it

it in terms of moments of lower order. Without further computation we may

conclude that all moments of order r+1 coincide with those of (Y,/Y, ¢+,
. m
Yn/Yn.1) where (Y, s, Y, ) ~Dla,, e, a,5a+1),Y, =1~ 3Y,. Therefore
1

(e Xteee, e X)L (Y, /Y, iyooe, Y, /Yo ), that is (X, e, X, ) ~DL(a,, s, apsa + 1)
and thus the proof is completed.
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