A Kind of Cubic C¹—Interpolations in the η -dimensional Finite Element Method*

Ren Hong Wang and Xi Quan Shi

(Jilin University)

§ | Introduction

As is well known that the multivariate spline function plays an important role in both theory and application. The paper [1]—[11] hove studied the multivariate spline functions and obtained a lot of results concerning this topic. Especially in [3], the existance theorem has been shown for the case of n-dimentional spline functions. A. Zenišek [10] and P. Alfeld [11] have established some of results about the tetrahedron partition. In this paper, we will show a kind of cubic C^1 —interpolations for any n-simplicial partition in R^n . Of course, some of the subdivisions will be needed.

§ 2 The structure of cubic C1—interpolation

Let Ω_n be a polyhedron in \mathbb{R}^n , \triangle_n a simplicial subdivision of Ω_n , and i-simplex $\mathbf{S}_j^{(i)}$, $i=0,1,\cdots,n$; $j=1,2,\cdots,T_i$. Suppose $\overline{\triangle}_n$ is a refining subdivision of \triangle_n formed by the following steps:

- i). Take an interior point $O_j^{(i)}$ in each i-simplex $S_j^{(i)}$, respectively, $i=2,3,\ldots,n$; $j=1,2,\ldots,T_i$.
- ii). Let $S_{j,0}^{(0)}$, $S_{j,1}^{(0)}$, ..., $S_{j,i}^{(0)}$ be the vertices of the *i*-simplex $S_j^{(i)}$, we join $O_j^{(i)}$ to each $S_{j,k}^{(0)}$ respectively, $i=2,\dots,n$; $j=1,2,\dots,T_i$; $k=0,1,\dots,i$.
- iii). Let $S_{j,k}^{(i)}$, $S_{j,k}^{(0)}$ (0 < k < i) be the same as ii). $S_{j,i_0}^{(0)}$, $S_{j,i_0}^{(0)}$, $S_{j,i_0}^{(0)}$, \cdots , $S_{j,i_m}^{(0)}$, the vertices of the (m)—simplex $S_{j,A}^{(m)}$; and $O_{j,A}^{(m)}$ be the interior point of $S_{j,A}^{(m)}$. We join $O_{j}^{(i)}$ to each $O_{j,A}^{(m)}$, respectively, where $i = 3, \dots, n$; $j = 1, 2, \dots, T_i$; $m = 2, 3, \dots, i-1$; and $A = \{i_0, i_1, \dots, i_m\} \subset \{i = 1, 2, \dots, m\}$.
- iv). When two *n*-simplices $S_i^{(n)}$ and $S_j^{(n)}$ have a (n-1)—dimentional common surface $S_k^{(n-1)}$, the interior points $O_i^{(n)}$, $O_i^{(n)}$, $O_k^{(n-1)}$ have to be collinear.

It is obvious that the refining subdivision $\overline{\triangle}_n$ exists, in fact, we can take

^{*} Received August 10, 1987.

This paper was presented at the fifth conference on Approximation Theory of China held at Zheng Zhou April 1987.

point $O_i^{(n)}$ as the center of inscribed sphere of $S_i^{(n)}$, where $i=1,2,\cdots,T_n$. When two n simplices $S_i^{(n)}$ and $S_j^{(n)}$ have a common surface $S_k^{(n-1)}$, we set point $O_k^{(n-1)}$ as the intersection point of the surface $S_k^{(n-1)}$ and the straight line $O_i^{(n)}O_j^{(n)}$, the others point $O_j^{(i)}$ may be any interior point of $S_j^{(i)}$, respectively.

For the refining subdivision $\overline{\triangle}_n$, we have the interpolation conditions as follows:

- 1). Values of position, gradient at $S_i^{(0)}$, $i = 1, 2, \dots, T_0$.
- 2). Let $\bar{\mathbf{S}}_{i}^{(1)}$ be the mid-point of $\mathbf{S}_{i}^{(1)}$, e_{i_0} a unit direction vector of $\mathbf{S}_{i}^{(1)}$, and e_{i_0} the vectors sotisfying the following conditions:

$$(e_{i_k}, e_{i_k}) = \delta_{j,k}$$
.

where $\delta_{j,k}$ is kronecker symbol, $j, k = 0, 1, \dots, n-1$. We give the directional derivatives $\frac{\partial f}{\partial e_i}(\overline{\mathbf{S}}_i^{(1)}), j = 1, 2, \dots, n-1; i = 1, 2, \dots, T_1$.

For any simplicial subdivision \triangle_n of a polyhedron domain in \mathbb{R}^n , we define $\mathbf{S}_k^{\mu}(\triangle_n, \mathbf{R}^n) := \{\mathbf{S} \in \mathbb{C}^{\mu}(\triangle_n)\}$; the restriction of S to each n simplex of \triangle_n is a polynomial of degree k.

We have

Theorem 1. The interpolation conditions 1) and 2) determine a unique multi variate spline function $S \in S_1^1(\overline{\triangle}_n, \mathbb{R}^n)$, and

$$\dim S_3^1(\overline{\Delta}_n, \mathbf{R}^n) = (n+1)T_0 + (n-1)T_1$$

To prove Theorem 1., we need the following three Lemmas.

Lemmas 1. Denote by $V(X_1, X_2, \dots, X_{n+1})$ the *n*-simplex with vertices X_1 , X_2 , ..., X_{n+1} . If $X_0 \in V(X_1, \dots, X_{n+1})$, then

$$\sum_{i=1}^{n+1} u_i(\mathbf{X}_i - \mathbf{X}_0) = 0,$$

where $(u_1, u_2, \dots, u_{n+1})$ is the barycentric coordinates of X_0 .

Denote by $D_{i,j} = D_{(X_j - X_i)}$ the (unnormlized) directional derivative of $(X_j - X_i)$, we have

Lemma 2. Let X_1 , X_2 , X_3 be the vertices of a triangle \triangle_{123} , and P(x) a polynomial of degree 3 satisfying the following conditions:

$$P(\mathbf{X}_i) = f(\mathbf{X}_i),$$

$$\mathbf{D}_{i,i}P(\mathbf{X}_i) = \mathbf{D}_{i,j}f(\mathbf{X}_i), \quad i, j = 1, 2, 3.$$

Then

$$P(x) = du_1u_2u_3 + \sum_{i=1}^{3} \left(\sum_{i=1}^{3} u_i D_{i,j} f(X_i) + (3 - 2u_i) f(X_i) \right) u_i^2$$

and

$$\mathbf{D}_{i,k}P(\frac{\mathbf{X}_i + \mathbf{X}_j}{2}) = \frac{1}{4}d + \frac{1}{4}(\mathbf{D}_{i,k}f(\mathbf{X}_i) + \mathbf{D}_{i,k}f(\mathbf{X}_j)) - \frac{1}{2}(\mathbf{D}_{i,j}f(\mathbf{X}_i) + 3f(\mathbf{X}_i)),$$

where i, j, k = 1, 2, 3; $i \neq j \neq k \neq i$; d is a real constant and the vector (u_1, u_2, u_3)

is the barycentric coordinates of X.

Similarly, we have

Lemma 3. Let X_1 , X_2 , X_3 , X_4 be the vertices of a tetrahedron $V(X_1, X_2, X_3, X_4)$, and P(x) a polynomial of degree 3 satisfying the following conditions: $P(X_i) = f(X_i)$; $D_{i,j}P(X_i) = D_{i,j}f(X_j)$, i, j = 1, 2, 3, 4.

Then

$$P(x) = \sum_{i=1}^{4} \left[d_{i} u_{i}^{-1} \prod_{j=1}^{4} u_{j} + \left(\sum_{j=1}^{4} u_{j} D_{i,j} f(X_{i}) + (3 - 2u_{i}) f(X_{i}) \right) u_{i}^{2} \right],$$

and

$$\mathbf{D}_{i,k}P(\frac{\mathbf{X}_i + \mathbf{X}_j}{2}) = \frac{1}{4}d_i + \frac{1}{4}(\mathbf{D}_{i,k}f(\mathbf{X}_i) + \mathbf{D}_{i,k}f(\mathbf{X}_j)) - \frac{1}{2}(\mathbf{D}_{i,j}f(\mathbf{X}_i) + 3f(\mathbf{X}_i)),$$

where (i, j, k, l) takes all of the permutations of the four numbers 1, 2, 3, 4; d_1 , d_2 , d_3 , d_4 are real constants, and the vector (u_1, u_2, u_3, u_4) is the bary centric coordinates of X.

The proof of Theorem 1.

Without loss of generality, we will only prove the theorem in the space \mathbb{R}^3 .

First, Let subdivision \triangle_3 have only one tetrahedron $V(X_1, X_2, X_3, X_4)$, and the refining subdivision $\overline{\triangle}_3$ be shown in Fig. 1, we aim at a function $S \in S_3^1(\overline{\triangle}_3, \mathbb{R}^3)$ satisfying the conditions 1) and 2).

First of all, we consider the tetrahedron V_2 : = $V(0, X_1, X_2, X_4)$ (See Fig 2.). It is not difficult to verify that

$$\dim S_3^1(\overline{V_2}, \mathbf{R}^3) = 22,$$

where $\overline{V_2}$ is the refining subdivision of V_2 which is generated by $\overline{\triangle}_3$.

By using the condition 1) and 2) and the values of position, gradient at point 0, we can obtain a unique function $\bar{S}_2 \in S_3^1(\overline{V_2}, \mathbb{R}^3)$.

Similarly, we can get the functions $\overline{S}_i \in S_3^1(\overline{V}_i, \mathbb{R}^3)$, where V_i and \overline{V}_i (i = 1, 2, 3, 4) are similar to V_2 and \overline{V}_2 as above state.

Define the spline function S satisfying $S|V_i = \overline{S_i}$, for each i, it is obvious that $S \in S_3^0(\overline{\Delta_3}, \mathbb{R}^3)$. Next we will get the values of pasition, gradient o S at the point O, such that $S \in S_3^1(\overline{\Delta_3}, \mathbb{R}^3)$.

In fact, in the process has been indicated as above, we used the directional deriatives $D_{0,i}S(O)$ ($1 \le i \le 4$) other/than the gradients, where we have supposed O is origin.

In order to get the values of S(O) and $D_{0,j}S(O)$, we set

$$\sum_{i=1}^{4} u_{0,i} \mathbf{D}_{0,i} S(\mathbf{O}) = 0, \quad \sum_{i=1}^{4} u_{0,i} \mathbf{D}_{0,i} S(\frac{\mathbf{X}_{j}}{2}) \mid_{\mathbf{X}_{i} \mathbf{O} \mathbf{X}_{i} \mathbf{X}_{j}} = \mathbf{O}, \quad j = 1, 2, 3, 4.$$
(1)

where $\triangle_{OX_iX_i}$ represents the segment \overline{OX}_i , $D_{0,i} = D_{X_i}$, and the vector $(u_{0,1}, u_{0,2}, u_{0,3}, u_{0,4})$ is the barycentric coordinates of O.

Without loss of generality, suppose the corresponding values at points $(X_i +$

 X_j)/2 (i, j = 1,2,3) appeared in the conditions 1) and 2) vanish.

According to (1) and Lemma 2, we have

$$\sum_{i=1}^{4} u_{0,i} \mathbf{D}_{0,i} \mathbf{S} (\mathbf{O}) = 0,$$

$$3S(\mathbf{O}) + \mathbf{D}_{0,i}S(\mathbf{O}) = 2u_{0,4}(\mathbf{D}_{i,0}f(\overline{i\,4}) + \frac{1}{4}\mathbf{D}_{0,i}f(\mathbf{X}_4)),$$

$$3S(\mathbf{O}) + \mathbf{D_{0,4}}S(\mathbf{O}) = 2\sum_{i=1}^{3} u_{0,i}(\mathbf{D_{i,0}}f(\overline{i\,4}) + \frac{1}{2}\mathbf{D_{0,i}}f(\mathbf{X_{4}})) + u_{0,4}(3f(\mathbf{X_{4}}) - \frac{1}{2}\mathbf{D_{0,4}}f(\mathbf{X_{4}})).$$

Hence

$$S\left(\mathbf{O}\right)=u_{0,4}^{2}f(\mathbf{X_{4}})-\frac{2}{3}u_{0,4}^{2}\mathbf{D_{0,4}}f(\mathbf{X_{4}})+\frac{4}{3}u_{0,4}\sum_{i=1}^{3}u_{0,i}\mathbf{D_{i,0}}f(\overline{i4}),$$

$$D_{0,i}S(O) = 2u_{0,4}(D_{i,0}f(i4) + \frac{1}{4}D_{0,i}f(X_4)) - 3S(O),$$

$$D_{0,4}S(O) = 2 \sum_{i=1}^{3} u_{0,i} (D_{i,0} f(\overline{i4}) + \frac{1}{2} D_{0,i} f(4)) + u_{0,4} (3f(X_4) - \frac{1}{2} D_{0,4} f(X_4)) - 3S(O),$$
(2)

where

$$f(\overline{i4}) = f(\frac{X_i + X_4}{2}); i = 1, 2, 3.$$

To prove $S \in S_3^1(\overline{\triangle}_3; \mathbb{R}^3)$, we only need to prove the function S belongs to C^1 on the joint of arbitrary two tetrahedrons in V_i $(1 \le i \le 4)$. Using conditions 1) and 2), for example, we have

$$D_{0,4}\overline{S_3}(\frac{X_i+X_j}{2}) = D_{0,4}\overline{S_4}(\frac{X_i+X_j}{2}), \quad i,j=1,2.$$

Moreover, from (1) and Lemma 1., we have

$$D_{0.4}\overline{S}_4(O) = D_{0.4}\overline{S}_3(O)$$

and

$$\mathbf{D}_{0,4}\overline{\mathbf{S}}_{3}(\frac{\mathbf{X}_{i}}{2}) = \mathbf{D}_{0,4}\overline{\mathbf{S}}_{4}(\frac{\mathbf{X}_{i}}{2}), \quad i = 1, 2.$$

Thus

$$\mathbf{D}_{0,4}\overline{\mathbf{S}}_{3}\big|_{\triangle\mathbf{O}\mathbf{X}_{1}\mathbf{X}_{2}} = \mathbf{D}_{0,4}\overline{\mathbf{S}}_{4}\big|_{\triangle\mathbf{O}\mathbf{X}_{1}\mathbf{X}_{2}}$$

 $|_{V_1 \cup V_4} \in S_3^1(\overline{V_3} \cup \overline{V_4}, \mathbb{R}^3)$. That being so $S \in S_3^1(\overline{\triangle}_3, \mathbb{R}^3)$.

According to Lemma 3, it is easy to get

 $S(x)|_{V_4} = (u_{4,1}D_{0,1}S(O) + u_{4,2}D_{0,2}S(O) + u_{4,3}D_{0,3}S(O) + (3 - 2u_{4,0})S(O))u_{4,0}^2$, where vector $(u_{4,1}, u_{4,2}, u_{4,3}, u_{4,0})$ is the barycentric coordinates of $X \in V_4$.

Let the barycentre coordinates of O_2 in the tetrahedron $V(X_1, X_2, X_3, X_4)$ be the vector $(u_{O_3,1}0, u_{O_3,3}, u_{O_3,4})$. Similarly we can obtain

$$\mathbf{S}(\mathbf{O}_{2}) = u_{\mathbf{O}_{2}, 4}^{2} f(\mathbf{X}_{4}) - \frac{1}{3} u_{\mathbf{O}_{2}, 4} \mathbf{D}_{\mathbf{O}_{2}, 4} f(\mathbf{X}_{4}) + \frac{4}{3} u_{\mathbf{O}_{2}, 4} \sum_{i=1}^{3} u_{\mathbf{O}_{2}, i} \mathbf{D}_{i, \mathbf{O}_{2}} f(\overline{i4}),$$

$$\mathbf{D}_{\mathbf{O}_{2}, i} \mathbf{S}(\mathbf{O}_{2}) = 2 u_{\mathbf{O}_{2}, 4} (\mathbf{D}_{i, \mathbf{O}_{2}} f(\overline{i4}) + \frac{1}{4} \mathbf{D}_{\mathbf{O}_{2}, i} f(\mathbf{X}_{4})) - 3 \mathbf{S}(\mathbf{O}_{2}), \tag{3}$$

$$D_{O_{2,4}}S(O_2) = 2\sum_{i=1}^{3} u_{O_{2},i} f(\overline{i4}) + \frac{1}{2}D_{O_{2},i} f(X_4) + u_{O_{2},4} (3f(X_4) - \frac{1}{2}D_{O_{2},4} f(X_4)) - 3S(O_2)$$

where $f(\overline{i4})$ are similar to (2); $u_{0,2}=0$; $D_{0,i}=D_{(X_i-0,1)}$ and i=1,3.

Suppose

$$f_1 = S | V(O, O_2, X_3, X_4),$$

$$f_3 = S | V(O, O_2, X_1, X_4),$$

$$f_4 = S | V(O, O_2, X_1, X_3)$$
.

then $(f_i - f_j)$ divides by Π_k^2 , where (i, j, k) takes the all of the permutations of the three number 1,3,4, and Π_k is the plane determined by three points \mathbf{O}, \mathbf{O}_2 and \mathbf{X}_k (k=1,3,4). We have

$$\mathbf{D}_{\mathbf{O}_{n}0}f_{1} = \mathbf{D}_{\mathbf{O}_{n}0}f_{3} = \mathbf{D}_{\mathbf{O}_{n}0}f_{4} \tag{4}$$

It means that the restriction of $D_{O_2,0}S$ to the tetrahedron V_2 is only a polynomial of degree 2, and

$$\mathbf{D_{O_{2},0}S}(\mathbf{X}) \mid_{\Delta \mathbf{X}_{1}\mathbf{X}_{3}\mathbf{X}_{4}} = \sum_{i=1}^{4V} \mathbf{D_{O_{2},0}} f(\mathbf{X}_{i}) u_{2,i} (2u_{2,i} - 1)$$

$$+ 4(u_{2,1}u_{2,3}\mathbf{D_{O_{2},0}} f(\overline{13}) + u_{2,3}u_{2,4}\mathbf{D_{O_{2},0}} f(\overline{34}) + u_{2,1}u_{2,4}\mathbf{D_{O_{2},0}} f(\overline{14})$$

where the vector $(u_{2,1}, u_{2,2}, u_{2,3}, u_{2,4})$ is the barycentric coordinates of $X \in V_2$, and $u_{2,2} = 0$. Denote by $F(u_{2,1}, u_{2,3}, u_{2,4})$ the function defined by the above equality we have

$$D_{O_{2},\emptyset}S(O_{2}) = F(u_{O_{2},\uparrow}, u_{O_{2},3}, u_{O_{2},\downarrow}),$$

$$D_{O_{2},\emptyset}S(\frac{X_{1}+O_{2}}{2}) = F(\frac{1}{2} + \frac{1}{2}u_{O_{2},\uparrow}, \frac{1}{2}u_{O_{2},3}, \frac{1}{2}u_{O_{2},4}),$$

$$D_{O_{2},\emptyset}S(\frac{X_{3}+O_{2}}{2}) = F(\frac{1}{2}u_{O_{2},\uparrow}, \frac{1}{2} + \frac{1}{2}u_{O_{2},3}, \frac{1}{2}u_{O_{2},4}),$$

$$D_{O_{3},\emptyset}S(\frac{X_{4}+O_{2}}{2}) = F(\frac{1}{2}u_{O_{3},\uparrow}, \frac{1}{2}u_{O_{3},3}, \frac{1}{2} + \frac{1}{2}u_{O_{3},4}).$$
(5)

By using Lemma 3, the systems of equations (2), (3), (5), the condition 1) and 2), we can get the explicit expression of S. For example, the expression of S on the tetrahedron $V(0, 0_2, X_1, X_3)$ is

$$S(x) \mid_{V(0, O_2, X_i, X_3)} = \sum_{i=0}^{3} (\overline{d_i} \overline{u_i} + \prod_{j=0}^{3} \overline{u_j} + (\sum_{j=0}^{3} \overline{u_j} D_{i,j} f(A_i) + (3 - 2\overline{u_i}) f(A_i)) \overline{u_i^2})$$
where $A_0 = 0$, $A_1 = x_1$, $A_2 = O_2$, $A_3 = x_3$; $D_{i,j} = D_{(A_j - A_i)}$; the vector $(\overline{u_0}, \overline{u_1}, \overline{u_2}, \overline{u_3})$ is the barycentric coordinates of $x \in V(A_0, A_1, A_2, A_3)$; $\overline{d_i} = 4D_{2,0}S(\frac{A_i + A_2}{2}) - (D_{2,0}S(A_i) + D_{2,0}f(A_i)) + 2(D_{2,i}S(A_2) + 3S(A_2))$, $i = 1, 3$; and $\overline{d_i} = 4D_{3,i}f(\frac{A_1 + A_3}{2})$, $i = 0, 2$.

For general subdivision \triangle_3 , using the preceding results, we have established an interpolating function S such that $S \mid S_i^{(3)} \in S_3^1(\overline{S}_i^{(3)}, \mathbf{R}^3)$, $i = 1, 2, \dots, T_3$; and $S \in S_3^0(\overline{\triangle}_3, \mathbf{R}^3)$. In the next place, we will prove when tetrahedrons $S_i^{(3)}$ and $S_i^{(3)}$ have

a common surface $\mathbf{S}_{k}^{(2)}$, the function $S \in \mathbf{C}^{1}(\mathbf{S}_{i}^{(3)} \cup \mathbf{S}_{j}^{(3)})$. Let $\mathbf{O}_{i}^{(3)}$, $\mathbf{O}_{j}^{(3)}$, $\mathbf{O}_{k}^{(2)}$ be collinear, $\mathbf{0}$ using (4), the restriction both of $\mathbf{D}_{k,i}\mathbf{S}_{i}$ and $\mathbf{D}_{k,j}\mathbf{S}_{j}$ to $\mathbf{S}_{k}^{(2)}$ are polynomials of degree 2. It follows from conditions 1) and 2) that

$$\frac{1}{\mathbf{L}_{\overline{k},i}}\mathbf{D}_{\overline{k},i}\mathbf{S}_{i}\big|_{\mathbf{S}_{k}} = -\frac{1}{\mathbf{L}_{\overline{k},j}}\mathbf{D}_{\overline{k},j}\mathbf{S}_{j}^{i}\big|_{\mathbf{S}_{k}^{(2)}},$$

where $S_i = S|_{S_i^{(3)}}$; $S_j = S|_{S_i^{(2)}}$; $D_{\overline{k},i} = D_{(O_i^{(3)} - O_k^{(2)})}$, and $L_{\overline{k},i} = ||O_i^{(3)} - O_k^{(2)}||$. Therefore $S \in C^1(S_i^{(3)} \bigcup S_j^{(3)})$, furthmore $S \in S_3^1(\overline{\Delta}_3, \mathbb{R}^3)$.

It is obvious that the interpolation scheme will reproduce the functions belonging to $S_3^1(\overline{\triangle}_3, \mathbb{R}^3)$, especially, it will reproduce the polynomials $\epsilon \mathscr{P}_3$.

Fig.2

References

- [1] Ren Hong, Wang, The Stuctural Characterizotion and Interpolation for Multivariate Splines, Acta Math. Sinica, 18(1975), 90—105.
- [2] R.H. Wang, On the analysis of multivariate splines in the case of arbitrary partition, Scientia Sinica, Math. I, (1979), 215—226.
- [3] R. H. Wang, On the analysis of multivariate splines in the case of arbitrary partition [], Higher dimensional spline, Numer. Math. J. Chinese Univ. 2(1980), 78—81.
- [4] R.H. Wang, The dimension and basis of spaces of multivariate splines, J. Comput. Appl. Math., 12 & 13 (1985), 163-177.
- [5] Y. S. Chou, L. Y. Su, and R. H. Wand, The dimention of bivariate spline spaces over trian gulations, In: W. Schempp and K. Zeller, eds. Multivariate Approx. Th. II, Birkhäuser, Basel, 1985, 71—83.
- [6] W. Dahmen and C. A. Micchelli, Recent progress on multivariate splines, Approximation Theory IV, Academic Press, New York, 1983, 27—121.
- [7] C. de Boor, Splines as linear combinations of B-splines, Approximation Theory [], Academic Press, New York, 1976, 1-47.
- [8] C. de Boor and K. Höllig, Bivariate bax splines and smooth pp functions on a three direction. mesh, J. Comput. Appl. Math., 9(1983), 13—28.
- [9] A. Zenišek, Polynomial approximation on tetrahedrons in the finite element method, J. Approx. Theory, 7(1973), 334—351.
- [10] P. Alfeld, A trivariate Clough Tocher scheme for tetrahedral data, Computer Aided Geomeric Design, 1(1984), 169-181.
- [11] X. Q. Shi, S. M. Wang, W. B. Wang, and R. H. Wang, The C—quadratic spline space on tian-gulation, Research Report, Dept. Math. and Inst. Math. Jilin University No. 86004, 1986.