The Structure of Almost Quasi-Regular Rings*

Du Xiankun (杜現昆)

(Institute of Mathematics, Jilin University, Changchun)

Let R be a ring. It is well-known that R is a semigroup with respect to the composition $a \circ b = a + b - ab$ for $a, b \in \mathbb{R}$. An element a of R is said to be (right; left) quasi-regular if there exists an element b in R such that $(a \circ b = 0; b \circ a = 0)$ $a \circ b = b \circ a = 0$, Denote by Q the set of elements of R which are not quasi-regular in R. We shall use |S| to denote the cardinality of a set S, and we refer to [1] for some results about the cardinal number used in this note.

An infinite ring R is called almost quasi-regular if |R| > |Q| > 1.

In this note, we will prove the following theorem.

Theorem. An infinite ring R is almost quasi-regular if and only if R = eRe + J, and eRe is a division ring and |R| > |J|, where e is a nonzero idempotent and J is the Jacobson radical of R. Moreover, Q = e + J.

To prove the theorem, we begin with some lemmas. For convenience, we define $a - B = \{a - b | b \in B\}$ for an element a of R and a subset B of R.

Lemma $| \cdot |$ If R is an almost quasi-regular ring with identity element, then R is a division ring.

Proof. Let V be the set of elements which are not units of R.

Then V = 1 - Q. Thus $|\mathbf{R}| > |\mathbf{Q}| = |1 - \mathbf{Q}| = |V|$. If $V \neq 0$, taken $u \in V$, $u \neq 0$, we can assume that $u\mathbf{R} \subset V$. Let \sim be the relation on \mathbf{R} diffined by $a \sim b$ if ua = ub for $a, b \in \mathbf{R}$. It is easy to verify that \sim is an equivalence relation on \mathbf{R} . Denote by [a] the equivalence class of a under \sim and let \mathbf{R}/\sim be the set of equivalence calses [a]. Then $[a] \rightarrow ua$ is a 1-1 mapping from \mathbf{R}/\sim into V, which implies that $|\mathbf{R}/\sim| \leq |V|$. Since \mathbf{R} is infinite, and $|\mathbf{R}| > |V|$, we have $|\mathbf{R}| = \max\{|[a]| |a \in \mathbf{R}\}$, whence $|[a]| = |\mathbf{R}| > |V|$ for some equivalence class [a]. Note that u(a - [a]) = 0, and $u \neq 0$. Then a - [a] contains no unit of \mathbf{R} , which implies that $a - [a] \subset V$. It follows that $|[a]| = |a - [a]| \leq |V|$. This contridicts the choice of [a]. Therefore, V = 0. Thus \mathbf{R} is a division ring.

Lemma 2. Let R be an almost quasi-regular ring. Then
(1) R contains nonzero idempotents;

^{*} Received Apr.8 1987

- (2) for every idempotent $e \neq 0$, e R e is a division ring;
- (3) every ideal of R is either quasi-regular or almost quasi-regular.

Proof. Let $u \in Q$. If u is right or left quasi-regular, say u is right quasi-regular, then there exists v in R such that $u \circ v = 0$, whence $v \circ u \circ v \circ u = v \circ u$ and $v \circ u \neq 0$ since u is not quasi-regular. Thus $v \circ u$ is a nonzero idempotent, which is neither right nor left quasi-regular. It follows that Q contains elements which are neither right nor left quasi-regular. For simplicity, we assume that u is neither right nor left quasi-regular. Thus $u \circ R \cup R \circ u \subset Q$. Note that the relation \sim on R difined by $a \sim b$ if $u \circ a = u \circ b$ and $a \circ u = b \circ u$ for $a, b \in R$ is an equivalence relation on R. Denote by [a, u] the equivalence class of a under \sim , and let R/\sim be the set of equivalence classes [a, u]. Then $[a, u] \rightarrow (u \circ a, a \circ u)$ is a 1-1 mapping from R/\sim into $u \circ R \times R \circ u$, from which $|R/\sim| \leq |u \circ R \times R \circ u| \leq |Q \times Q| = |Q|^2$. Since |R| is infinite and |R| > |Q|, we have $|R| > |Q| > |R/\sim|$, whence |R| = |[a, u]| for some equivalence class [a, u].

Note that $b \in [a, u]$ if and only if $a - b \in [0, u]$, Thus $a - [a, u] \subset [0, u]$, whence |[0, u]| > |a - [a, u]| = |[a, u]| = |R|. Then we have |[0, u]| = |R|. Since |u - [0, u]| = |[0, u]| = |R| > |Q|, there exists $x \in [0, u]$ such than u - x is quasi-regular. Thus $x \neq 0$ and $u \circ x = x \circ u = u$, that is, x = ux = xu. Suppose that $y \in R$ such that $(u - x) \circ y = y \circ (u - x) = 0$. Then we have u - x + y - uy + xy = 0, and x(u - x + y - uy + xy) = 0, from which $x - x^2 + x^2y = 0$; that is $x = x^2(u - y)$. Symmetrically, $x = (u - y)x^2$. Observe that $x = x^2(u - y) = x^4(u - y)^3 = x^3(u - y)^3x^2$. We see that $x(u - y)^3x^2$ is a nonzero idempotent, since $x \neq 0$. This completes the proof of (1).

Now we prove (2), Let e be a nonzero idempotent of R. Then it is esty to prove that [0,e]=eRe is an infinite ring with identity element e. Let Q(eRe) denote the set of elements in R which are not quasi-regular in the ring eRe. If exe is quasi-regular in R, then there exists y in R such that $exe \circ y = y \circ exe = 0$, whence $y = exe y - exe = yexe - exe \in eRe$. Hence $Q(eRe) \subset Q$. It follows that $|eRe| = |[0,e]| = |R| > |Q| \ge |Q(eRe)|$. Consequently, eRe is an almost quasi-regular ring with identity element. By Lemma 1, eRe is a divisioo ring.

Let I be an ideal of R such that $I \subset J$, and Q(I) denote the set of elements of I which are not quasi-regular in the ring I. It is clear that Q(I) is not empty. Given $u \in Q(I)$, if u is right or left quasi-regular in R, say right quasi-regular, then there exists $v \in R$ such that u = v = 0 whence $v = uv - u \in I$, and then $v \circ u$ is a nonzero idempotent contained in I. Hence we can assume that u is neither right nor left quasi-regular in R. For every $x \in [0, u]$, we have $x = ux = xu \in I$. Thus $[0, u] \subset I$, and so $|I| \ge |[0, u]| = |R|$. Therefore, |I| = |R| is infinite. Since an element of I is quasi-regular in I if and only if so is it in R, we have $Q(I) \subset Q$. Thus $|I| = |R| > |Q| \ge |Q(I)|$, and so I is an almost quasi-regular ring.

Lemma 3. Let R be a prime ring with nonzero idempotents such that for every nonzero idempotent e, eRe is a division ring. Then R is a division ring.

Proof. It is clear from [2, Lemma 3].

Lemma 4. If R is a semiprimitive almost quasi-regular ring, then R is a division ring.

Proof. By Lamma 2, R has a nonzero idempotent e and eRe is a division ring, whence eR is a minimal right ideal of R, and then ReR is a simple ring with minimal right ideals. From Lemma 2 and Lemma 3, we see that ReR is a division ring. Thus there exists an ideal T in R such that $R = ReR \oplus T$. If $T \neq 0$, T contains a nonzero idempotent f by Lemma 2. Note that e + f is also a non zero idempotent. Then (e + f)R(e + f) is a division ring by Lemma 2, which contridicts the fact that ef = 0 and e, $f \in (e + f)R(e + f)$. Hence $T \neq 0$, and so R = ReR is a division ring.

Lemma 5. Let R be an arbitrary ring with $e^2 = e \neq 0$ and the Jacobson radical J such that eJe = 0. Then ere + j, $j \in J$, is quasi-regular if and only if ere is quasi-regular (in eRe).

Proof. Suppose that ere+j is quasi-regular. Then there exists y in \mathbb{R} such that $(ere+j) \circ y = y \circ (ere+j) = 0$, from which $e((ere+j) \circ y)e = 0$; that is, $ere \circ eye = 0$. Similarly, $eye \circ ere = 0$. Hence ere is quasi-regular in eRe.

Conversely. assume that *ere* is quasi-regular in *eRe*. Then exists *ese* such that $ere \circ ese = ese \circ ere = 0$. Since $j \in J$, there exists j' in J such that $j \circ j' = j' \circ j = 0$. Set k = j' + j'esej' - esej' - j'ese. Then one can verify that $(ere + j) \circ (ese + k) = (ese + k) \circ (ere + j) = 0$. Thus ere + j is quasi-regular.

Now we give the proof of Theorem.

Let R be an almost quasi-regular ring. By Lemma 4, $e+J \subset Q$, and then |R| > |Q| > |e+J| = |J|. Write $\overline{R} = R/J$. Then $|R| = \max\{|J|, |\overline{R}|\} = |\overline{R}|$, since |R| is infinite. Denote by $Q(\overline{R})$ the set of elements which are not quasi-regular in \overline{R} . Note that $\overline{a} \in \overline{R}$ is quasi-regular in \overline{R} if and only if so is $a \in R$ in R. Then $Q(\overline{R}) \subset \overline{Q}$. It follows that $|\overline{R}| = |R| > |Q| = \max\{|J|, |\overline{Q}|\} > |\overline{Q}| > |Q(\overline{R})|$. Hence \overline{R} is a semiprimitive almost quasi-regular ring. By Lemma 5, \overline{R} is a division ring, According to Lamma 2, \overline{R} has a nonzero idempotent \overline{R} . Then $\overline{R} = \overline{R} = \overline{R}$

Conversely. assume that R = eRe + J and eRe is a division ring, where $e^2 = e \neq 0$, and |R-| > |J|, By Lemma 4, Q = e + J and therefore |R| > |J| = |e + J| = |Q|. Since R is an infinite ring, we see that R is an almost quasi-regular ring.

I wish to thank Professor Xie Bangjie for his guidance.

(to199)

$$= \frac{\prod\limits_{1 \le i} \frac{x_i - x_j}{x_1 + x_2 + \cdots + x_{n+1}}}{x_1 + x_2 + \cdots + x_{n+1}} \sum_{i=1}^{n+1} x_i \prod_{\substack{j=1 \ i \ne i}}^{n+1} (\frac{x_i + x_j}{x_i - x_j})$$

对上式的后一和号,结合(2)式的特例: t=-1并计算y的系数,便有:

$$\sum_{i=1}^{n} x_{i} \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{x_{i} + x_{j}}{x_{i} - x_{j}} = \sum_{i=1}^{n} x_{i}$$

由此便知(3)式对n+1正确. 根据归纳法原理便知对任何自然数n,(3)式成立. 定理3证毕. 若以 A_n 表示 S_n 的交代子群, $O_n=S_n \setminus A_n$. 结合(1)及(3)则有下述推论. 定理 4

i.
$$\sum_{\sigma \in A_n} \prod_{j=1}^n x_{\sigma(j)} / \sum_{i=j}^n x_{\sigma(i)} = \frac{1}{2} \{ 1 + \sum_{1 \le i \le j \le n} \frac{x_i - x_j}{x_i + x_j} \}$$

ii.
$$\sum_{\sigma \in \mathcal{O}_n} \prod_{j=1}^n x_{\sigma(j)} / \sum_{i=j}^n x_{\sigma(i)} = \frac{1}{2} \left\{ 1 - \prod_{1 \le i \le j \le n} \frac{x_i - x_j}{x_i + x_j} \right\}$$

若以 S_m 表示多重集合 $\{1^{m_1}, 2^{m_2}, \dots, n^{m_n}\}$ 的排列集合,则有命题 1 的多重形式.

定理 5 设 $|\overline{m}| = \sum_{i=1}^{n} m_i$,则

$$\sum_{\sigma \in S_n} \prod_{k=1}^{\lfloor \overline{m} \rfloor} \frac{x_{\sigma(k)}}{x_{\sigma(k)} + x_{\sigma(k+1)} + \cdots + x_{\sigma(\lfloor \overline{m} \rfloor)}} = \frac{1}{\prod_{i=1}^{n} m_i!}$$

上式中取 $\overline{m} = (1, 1, \dots, 1)$ 便给出命题1.

类似于命题1, 定理 5 的证明可利用归纳法完成, 此处从略.

参考文献

- [1] Littlewood, D.E., The the theory of group characters, 2nd ed., 1950, Oxford Unir . Prass.
- [2] Macdonald, I.G., Symmetric functions and Hall polynomials, Clarendon press, 1979, Oxford.

(from 202)

References

- [1]谢邦杰,超穷数与超穷论法,吉林人民出版社,1979.
- [2] Du Xiankun, The structure of generalized radical rings, Northeastern Math. J. (to appear).