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Let R be a ring. It is well-known that R is a semigroup with respect -

to the composition a<b=a+ b —ab for a,beR. An element a of R is said to be

(right; left) quasi regular if there exists an element  in R such that (a-b = (;
boa=() ab=b-a=(, Denote by Q the set of elements of R which are not quasi -
regular in R, We shall use [S|to denote the cardinality of a set S, and we
refer to [ 1 ] for some results about the cardinal number used in this note.

An infinite ring R is called almost quasi-regular if |R|>|Q|>1.

In this note, we will prove the following theo rem.

Theorem. An infinite ring R is almost quasi -regular if and only if R=eRe
+J, and eRe is a division ring and |[R|>>[J|, where e is a nonzero idempotent
and J is the Jacobson radical of R. Moreover, Q=e+]J.

To prove the theorem, we begin with some lemmas. For convenience, we
define a -B={a-b|beB} for an element a of R and a subset B of R.

Lemma | . If R is an almost quasj-regular ring with identity element, then
R is a division ring.

Proof. Let V be the set of elements which are not units of R.

Then V=1-Q. Thus [R|>|Q|=[1-Q|=V|. If V£0, taken ueV, us0, we
can assume that uRCV . Let~be the relation on R difined by a~b if ua=ub for
a,beR. It is easy to verify that ~is an equivalence relation on R. Denote by

[a ] the eqivalence class of 4 under ~and let R/~ be the set of- equivalence
calses [a ]. Then [a ] —»ua is a 1 -1 mapping from R/ ~into ¥, which-implies
that [R/~|<Z [V|. Since R is infinite, and [R|>|v|, we have |R|=max {|[a]l|ac

!, whence I[q]]z R[> [V|for some equivalence class [a]. Note that u (a-[a])
=(,and u# (0. Then a-[a] contains no unit of R, which implies that a - [a]C
V. It follows that [[aJ|=|a - [a]|<|V|. This contridicts the choice of [a]. There-
fore, V=0. Thus R is a division ring.

Lemma 2.  Let R be an almost quasi regular ring. Then

(1) R contains nonzero idempotents;
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Q. Thus |I|=|]R|>[|Q|>]Q D

(2) for every idempotent e-~(, eRe is a division ring;
(3) every ideal of R is either quasi-regular or almost quasi regular.

Proof. Let ue¢Q. If u is right or left quasi-regular, say « is right quasi-
regular, then there exists » in R such that u< =0, whence p-uovost =pou andp-u
#0 since u# is not quasi -regular. Thus »ou is a nonzero idempotent, which is
neither right nor left quasi regular. It follows that Q contains elements which
are neither right nor left quasi -regular . For simplicity, we assume that u is nei -
ther right nor left quasi -regular . Thus u- R JR-u#(_Q. Note that the relation ~on
R difined by a~b if u-a=u-b and a-u=b-u for a, beR is an equivalence reia -
tion on R. Denote by [a, u] the equivalence class of « under ~, and let R/~ be
the set of equivalence“c)ass‘es la,u]}. Then [a,u]—>(4-a,a-u) is a ] -1 mapping
from R/~ into uoRxRou, from which |[R/~|<|u-R xR:u|< |QxQ|=]|Q|?. Since
IR |is infinite and |R}>|Q|, we have |R| ~|Q|>|R/~]|, whence |[R|=|la,u]|for
some equivalence class [a,u].

Note that bel{a,u] if and only if a-be[0,u], Thus a- [a,u]JC[0,u], whence
ICo,ul{>la - [a,u]]=|la,u]|=|R|. Then we have |[0,u]]|=|R|. Since |u-[0,ul|=
ICo,#1|=|R|>|Q]|, there exists xe[0,u] such than & x is quasi -regular. Thus x#
0 and uox=xou=u, that is, x=ux=xu. Suppose that yeR such that (u- x)oy=

y°u-x)=0. Then we have u~x+y—-uy+xy=0.and x(u—-x+y-uy+xy)=0,
from which x—x’+ xzy: 0; that is x=x"(u—y) .Symmetrically, x= (u—y)x2 .
Observe that x= xz(u -y)= x4(u— y)3=x3(u - y)3x2 . We see that x(u-— y)sx2 is a
nonzero idempotent, since x#(0, This completes the proof of (1).

Now we prove (2), Let e be a nonzero idempotent of R, Then it is esty
to prove that [(,e] =eRe is an infinite ring with identity element e¢. Let Q (eRe)
denote the set of elements in R which are not quasi »-regulaf in the ring eRe. If
exe is quasi -regular in R, then there exists y in R such that exe- y= y-exe =,
whence y=exey—- exe = yexe - execeRe. Hence Q (eRe)Q. It follows that leRe|
=1[0,e]i= |R|>1Q|>|Q (¢Re)|. Consequently, eRe is an almost quasi -regular ring
with identity element. By Lemma 1, eRe is a divisioo ring.

Let I be an ideal of R such that 1¢/J, and Q (I ) denote the set of elements
of I which are not quasi -regular in the ring I. It is clear that Q (I) is not .
empty. Given ue¢Q (I), if u is right or left quasi -regular in R, say right quasi-
regular, then there exists »¢R such that u .p=( whence v=wuv—uel , and then
vou is a nonzero idempotent contained in 1. Hence we can assume that u is
neither right nor left quasi-regular in R. For every xe[(0,u], we have x=ux=xu
€I. Thus [0,4]1CI, and so [I|>|[0,u]| = |R|. Therefore, [I|=|R|is infinite . Since
an element of I is quasi-regular in I if and only if so is it in R, we have Q (I)

. and so I is an almost quasi-regular ring.
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Lemma 3. Let R be a prime ring with nonzero idempotents such that for every
nonzero idempotent ¢, eRe is a division ring. Then R is a division ring.

Proof . It is clear from [2, Lemma 3].

Lemma 4 If R is a semiprimitive almost quasi-regular ring, then R is a
division ring. .
Proof . By Lamma 2, R has a nonzero idempotent e and eRe is a division
ring, whence eR is a minimal right ideal of R, and then ReR is a simple ring
with minimal right ideals. From Lemma 2 and Lemma 3, we see that ReR is a
division ring. Thus there exists an ideal T in R such that R =ReRBT . If T+o,

T contains a nonzero idempotent fby Lemma 2. Note that ¢ + fis also a non
zero idempotent. Then (e + )R (e + f) is a division ring by Lemma 2, which
contridicts the fact that ef=0 and e, fe(e+ f)R (e + f). Hence T+0, and so R =
ReR is a division ring.

Lemma 5. Let R be an arbitrary ririg with e’=e=( and the Jacobson radical
J such that eJe =0, Then ere+ j, jeJ, is quasi-regular if and only if ere is quasi-
regular (in eRe) .,

Proof. Suppose that ere + j is quasi-regular . Then there exists y in R such
that (ere+ jloy=yo- (ere+j) =0, from which e((ere+ j)oy)e =(; that is, ereceye = 0,
Similarly, eyeoere =(, Hence ere is quasi-regular in eRe .

Conversely. assume that ere is quasi-regular in eRe. Then exists ese such
that ere-.ese =ese-ere = (), Since jeJ, there exists j’' in J such that joj' =j%j=0,
Set k=j'+j'esej’ —esej’ - jese. Then one can verify that (ere+ j)o (ese+k) =

(ese +k)o (ere+ j)=0. Thus ere + j is quasi-regular ., '

Now we give the proof of Theorem.

Let R be an almost quasi-regular ring. By Lemma 4, e + JCQ, and then |R|
>|Q|>le +J|=|¥|. Write R=R/J. Then [R|=max{JJ|, [R|}=|R|, since |R]is
infinite . Denote by Q (R ) the set of elements which are not quasi-regular in R.
Note that a¢R is quasi-regular in R if and only if so is aeR in R. Then Q R)
Q. It follows that [R|=|R[>|Q|=max{|J |, [Q]}>|Q|>|Q (R)|.Hence R is a
semiprimitive almost quasi-regular ring. By Lemma 5, R is a division ring, Acco-
rding to Lamma 2, R has a nonzero idempotent ¢. Then R=¢eRe+J, in which
eRe is a division ring from Lemma 2. '

Conversely . assume that R=¢eRe +J and eRe is‘ a division ring, where e’=e
#0,and |R-|>>|J |, By Lemma 4,Q=e+J and therefore |R|>|J|=le+]|=]Q |.
Since R is an infinite ring, we see that R is an almost quasi-regular ring .

I wish to thank Professor Xie Bangjie for his guidance.
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