Journal of Mathematical Research and Exposition. Vol.9, No.2, May, 1989

The Unitary Equivalence Problem of Unilateral Weighted Shifts*

Yu Dahai

Dai Zhenggui

(Department of Mathematics (Sichuan Education College) Sichuan University)

In this paper, we study the unilateral weighted shift which is unitarily equivalent to a Toeplitz operator and prove a similar result to that in [1] without the hypothesis that the shift must be hyponormal. As a corollary, we show that if the weight sequence $\{a_n\}_{n=0}^{\infty}$ of the shift is convergent, then

$$1-a_n^2=(1-a_0^2)^{n+1}$$
 $\forall n \ge 0$

1. Introduction. Proof. Sun Shunhua proved in [1] the following result:a hyponormal unilateral weighted shift is unitarily equivalent to a Toeplitz operator if and only if the weight sequence $\{a_n\}_{n=0}^{\infty}$ satisfies

$$1 - |a_n|^2 = (1 - |a_0|^2)^{n+1} \quad \forall n \geqslant 0$$

by which we can immediately give the negative answer of question 5 that Halmos rises in 1970 [2], i.e. There is subnormal Teoplitz operator which is neither normal nor analytic. What we are interested in is: Is the hypothesis in [1] that the weighted shift be hyponormal necessary? We shall not consider the trivial case when T is an isometry and consequently ϕ is analytic.

Our main result includes

Theorem 1. If an unilateral weighted shift $T \cong T_{\varphi} | \varphi | = 1$ a.e. The weight sequence of T is $\{a_n\}_{n=0}^{\infty}$ and the set $N = \{k : a_k = a_0\}$ is finite, then $1 - a_n^2 = (1 - a_0^2)^{n+1} \quad \forall n \geqslant 0$

$$1 - a_n^2 = (1 - a_0^2)^{n+1} \qquad \forall n \geqslant 0$$

Corollary 1. If the weight sequence $\{a_n\}_{n=0}^{\infty}$ of the shift T is convergent and $T \cong T_{\bullet}$ then $1 - a_n^2 = (1 - a_0^2)^{n+1} \quad \forall n > 0$

2. Lemmas. Let D be the unit disk in the complex plane, ∂D be the unit circle. $L^{\infty}(\partial D)$ and $L^{2}(\partial D)$ be the bounded measurable function space and square integrable function space on the unit circle, $H^{\infty}(\partial D)$, $H^{2}(\partial D)$ be ordinary Hardy spaces. We shall denote them by L^{∞} , L^{2} , H^{∞} , H^{2} .

Received, Jan.8, 1987.

^{••} This research is supported by a grant of National Science Fundation of China.

Let T be an unilateral weighed shift on H^2 with weight sequence $\{a_n\}_{n=0}^{\infty}$. We can assume $a_n \ge 0 \quad \forall n \ge 0 \quad [3]$. If T is unitarily equivalent to a Toeplitz operator on H^2 , then there exists an orthornormal basis $\{e_n\}_{n=0}^{\infty}$ of H^2 and $\varphi \in L^{\infty}$ such that $Te_n = T_{\varphi}e_n = a_ne_{n+1} \quad \forall n \ge 0$

Note: Now we have $a_n \neq 0 \ \forall n \geqslant 0 \ [4]$.

Lemma |. For a fixed k and an element $x \in H^2$, if

$$T_{\varphi}^*T_{\varphi}x=a_k^2x$$

then

$$x = \sum_{i=0}^{\infty} x_i e_{k_i}$$

where k_i satisfy $a_{k_i} = a_k$ $i = 0, 1, 2, \cdots$

Proof. See [5].

Lemma 2. If $|\varphi| = 1$ a.e. then e_0 is an outer function and $\varphi = r(te_0\sqrt{e_0})$, where r is a constant and |r| = 1.

Proof. See [1].

Lemma 3. If $\psi \in L^{\infty}$ and $\psi \in H^2$, then $\psi \in H^{\infty}$.

Proof. See [1].

3. Proof of the theorem.

Theorem 1. If an unilateral weighted shift $T \cong T_{\varphi} |\varphi| = \emptyset$ a.e. the weight sequence of T is $\{a_n\}_{n=0}^{\infty}$ and the set $N = \{k : a_k = a_0\}$ is finite, then

$$1 - a_n^2 = (1 - a_0^2)^{n+1} \quad \forall n \geqslant 0$$

Proof. Since

$$\varphi e_{n} = a_{n} e_{n+1} + (1 - a_{n}^{2})^{1/2} \eta_{n}$$

$$\overline{\varphi} e_{n+1} = a_{n} e_{n} + (1 - a_{n}^{2})^{1/2} \xi_{n}$$

$$\eta_{n}, \xi_{n} \in \overline{H}_{0}^{2} \quad \text{and} \quad \|\eta_{n}\| = \|\xi_{n}\| = 1$$

$$t e_{n} = a_{n} \overline{\varphi} t e_{n+1} + (1 - a_{n}^{2})^{1/2} \overline{\varphi} + t_{n}$$
(1)

we have

it is easy to show by computation that

$$T_{\varphi}^*T_{\varphi}\overline{t\eta}_n = a_n^2 \overline{t\eta}_n$$

Therefore, by Lamma 1

$$\overline{t\eta}_{n} = \sum_{i=0}^{\infty} a_{i} e_{n_{i}}$$
 where $a_{n_{i}} = a_{n}$ $i = 0, 1, 2, \dots$

Note: We put $e_{n_0} = e_n$.

For the first step, we assume $a_0 \neq a_n \forall n > 0$

therefore

$$\overline{t\eta_0} = a_0 e_0 \quad \eta_0 = \overline{a_0} \overline{te_0} \quad |a_0| = 1$$

 $\varphi e_0 = a_0 e_1 + (1 - a_0^2)^{1/2} \overline{a_0} + \overline{e_0}$

by Lemma 2.

$$\varphi = r \frac{te_0}{\overline{e_0}} \qquad \overline{\varphi}e_0 = \overline{r} \overline{te_0}$$

combine these two equalities and by Lemma 3, we have

$$\varphi - \frac{\overline{a_0}}{\overline{r}} (1 - a_0^2)^{1/2} \overline{\varphi} \in \mathbf{H}^{\infty}$$

—222 —

i.e.
$$\varphi e_n - \frac{\overline{a_0}}{\overline{r}} (1 - a_0^2)^{1/2} \overline{\varphi} e_n$$

$$= a_n e_{n+1} + (1 - a_n^2)^{1/2} \eta_n - \frac{\overline{a_0}}{\overline{r}} (1 - a_0^2)^{1/2} (a_{n-1} e_{n-1} + (1 - a_{n-1}^2)^{1/2} \xi_{n-1}) \in \mathbf{H}^2$$
so
$$(1 - a_n^2)^{1/2} \eta_n - \frac{\overline{a_0}}{\overline{r}} (1 - a_0^2)^{1/2} (1 - a_{n-1}^2)^{1/2} \xi_{n-1} = 0$$

$$1 - a_n^2 = (1 - a_0^2)^{n+1} \quad \forall n \geqslant 0$$

Before our second step, we need the following two Lemmas.

Lemma 4. If $T_{\varphi}e_n = Te_n = a_n e_{n+1} \ \forall n \ge 0$ and $|\varphi| = 1$ a.e. then the vector $(\langle \varphi t e_0, 1 \rangle, \langle \varphi t e_{k_i}, 1 \rangle, \cdots, \langle \varphi t e_{k_m}, 1 \rangle, \cdots)$ (obviously, it belongs to l^2) can not be a zero vector, where $T_{\varphi}e_{k_i} = a_{k_i}e_{k_i+1} = a_0e_{k_i+1}$ and $\langle \cdot \cdot \rangle$ represents the inner product in L^2 .

Proof. Put n=0 in (1) we have

$$\varphi \begin{bmatrix} e_0 \\ e_{k_1} \\ \vdots \\ e_{k_m} \end{bmatrix} = a_0 \begin{bmatrix} e_1 \\ e_{k_0+1} \\ \vdots \\ e_{k_m+1} \end{bmatrix} + (1 - a_0^2)^{1/2} W \begin{bmatrix} \overline{te}_0 \\ \overline{te}_{k_1} \\ \vdots \\ \overline{te}_{k_m} \end{bmatrix}$$

it is easy to see that W is an unitary operator on the subspace $V = \text{span } \{\overline{te_0}, \overline{te_{k_1}}, \cdots, \overline{te_{k_k}}, \cdots \}$ Inner products with 1, we get

$$\begin{bmatrix} \langle \varphi + e_0, 1 \rangle \\ \langle \varphi t e_{k_1}, 1 \rangle \\ \langle \varphi t e_{k_m}, 1 \rangle \end{bmatrix} = (1 - a_0^2)^{1/2} W \begin{bmatrix} \overline{e_0(0)} \\ \overline{e_{k_1}(0)} \\ \vdots \\ \overline{e_{k_m}(0)} \end{bmatrix}$$

since e_0 is outer, the left side cannot be a zero vector.

Lemma 5. With the same conditions as in Lemma 4, we have $a_n < 1 \quad \forall n \ge 0$ **Proof.** Assume $a_k = 1$ for some k, by (1), we have

$$T_{\varphi}e_k = \varphi e_k = e_{k+1}$$

put $M = \{x \in H^2 : \varphi x \in H^2\}$, then M is a non-trivial invariant subspace of U (the multiplicate operator M, on H^2). Therefore, there exists an inner function ψ such that $M = \psi H^2$

So $\varphi = \overline{\psi} \chi$ where χ is an inner function, by [7], T_{φ} is a partial isometry, this is impossible except $a_n = 1 \ \forall n \ge 0$ (which is a trivial case for the whole theorem).

Now we turn to prove our theorem, put $N = \{k : a_k = a_0\}$ N is a finite set, assume $N = \{k_0, k_1, k_2, \dots k_m\}$ and $k_0 = 0$.

we are going to prove that N contains only one element.

Because

$$T_{\varphi}^* T_{\varphi} = \sum_{n=0}^{\infty} a_n^2 e_n \otimes e_n$$

$$U^* T_{\varphi}^* T_{\varphi} U = T_{\varphi}^* T_{\varphi} + U^* T_{\varphi}^* 1 \otimes U^* T_{\varphi}^* 1$$

and

$$1 = \sum_{n=0}^{\infty} \overline{e_n}(0) e_n \quad T_{\varphi}^* = \sum_{n=0}^{\infty} \overline{e_n(0)} a_{n-1} e_{n-1} = \sum_{n=0}^{\infty} \overline{e_{n+1}(0)} a_n \ddot{e}_n$$

we have

$$\sum_{n=0}^{\infty} a_n^2 e_n \otimes e_n = \sum_{n=0}^{\infty} a_n^2 U^* e_n \otimes U^* e_n - \sum_{n=0}^{\infty} \langle , U^* T_{\varphi}^* 1 \rangle \overline{e_{n+1}(0)} a_n U^* e_n$$

$$= \sum_{n=0}^{\infty} (a_n^2 \langle , U^* e_n \rangle - \langle , U^* T_{\varphi}^* 1 \rangle \overline{e_{n+1}(0)} a_n) U^* e_n \qquad (2)$$

therefore

$$a_{0}^{2}te_{0} = \sum_{n=0}^{\infty} \left(a_{n}^{2} \langle te_{0}, e_{n} \rangle - \langle te_{0}, T_{\varphi}^{*} 1 \rangle \overline{e_{n+1}(0)} a_{n} \right) e_{n}$$
$$- \sum_{n=0}^{\infty} \left(a_{n}^{2} \langle te_{0}, e_{n} \rangle - \langle te_{0}, T_{\varphi}^{*} 1 \rangle \overline{e_{n+1}(0)} a_{n} \right) e_{n}(0)$$

inner products with e_0

$$a_0^2 \langle te_0, e_0 \rangle = a_0^2 \langle te_0, e_0 \rangle - \langle \varphi te_0, 1 \rangle \overline{e_1(0)} a_0$$
$$- \langle \sum_{n=0}^{\infty} (a_n^2 \langle te_0, e_n \rangle - \langle \varphi te_0, 1 \rangle \overline{e_{n+1}(0)} a_n) e_n(0) \rangle \overline{e_0(0)}$$

we have

$$a_0^2 + e_0 = \sum_{n=0}^{\infty} \left[a_n^2 \langle t e_0, e_n \rangle - \langle \varphi t e_0, 1 \rangle \overline{e_{n+1}(0)} a_n \right] e_n + \frac{1}{\overline{e_0(0)}} \langle \varphi t e_0, 1 \rangle a_0 \overline{e_1(0)}$$
 (3)

If $T_{\varphi}e_{k_i} = a_0e_{k_i+1}$ $i = 0, 1, \dots, m$. Inner products e_{k_i} with (3), we get

$$a_{0}^{2}\langle te_{0}, e_{k_{i}} \rangle = a_{0}^{2}\langle te_{0}, e_{k_{i}} \rangle - a_{0}\langle \varphi te_{0}, 1 \rangle \overline{e_{k_{i}+1}(0)} + \frac{1}{\overline{e_{0}(0)}} \langle \varphi te_{0}, 1 \rangle a_{0} \overline{e_{1}(0)} \overline{e_{k_{i}}(0)}$$

$$\langle \varphi te_{0}, 1 \rangle \overline{e_{k_{i}+1}(0)} \overline{e_{0}(0)} = \langle \varphi te_{0}, 1 \rangle \overline{e_{k_{i}}(0)} \overline{e_{1}(0)}$$

by Lemma 4, $\langle \varphi t e_{k_i}, 1 \rangle$ $i=0,1,2,\cdots$, m can not be all zeros. Without loss of gene rality we assume $\langle \varphi t e_0, 1 \rangle \neq 0$ then we have $e_0(0)e_{k_i+1}(0) = e_1(0)e_{k_i}(0)$ it follows that

- i) if $e_1(0) = 0$, then $e_{k_i+1}(0) = 0$, $i = 0, 1, 2, \dots m$.
- ii) if $e_1(0) \neq 0$, then

$$e_{k_i+1}(0) = \frac{e_1(0)}{e_0(0)} e_{k_i}(0), \quad i = 0, 1, 2, \dots m.$$
 (4)

Consider the subspace spaned by $\{e_0, e_{k_1}, e_{k_2}, \cdots e_{k_m}\}$ choose λ_1 and λ_2 such that

$$\lambda_{1} e_{k_{m}}(0) + \lambda_{2} e_{k_{m-1}}(0) = 0$$

$$\frac{\lambda_{1} e_{k_{m}} + \lambda_{2} e_{k_{m-1}}}{\epsilon H^{2}} \epsilon H^{2}$$
(5)

so

we have

$$T_{\varphi}^* T_{\varphi} \frac{\lambda_1 e_{k_m} + \lambda_2 e_{k_{m-1}}}{t} = a_0 T_{\varphi}^* U^* (\lambda_1 e_{k_{m-1}} + \lambda_2 e_{k_{m-1}+1})$$

by (5) we have

$$U^*(\lambda_1 e_{k_m+1} + \lambda_2 e_{k_{m-1}+1}) = \frac{\lambda_1 e_{k_m+1} + \lambda_2 e_{k_{m-1}+1}}{t}$$

$$-224 -$$

therefore

$$T_{\varphi}^{*}T_{\varphi}\frac{\lambda_{1}e_{k_{m}}+\lambda_{2}e_{k_{m-1}}}{t}=a_{0}^{2}\frac{\lambda_{1}e_{k_{m}}+\lambda_{2}e_{k_{m-1}}}{t}$$

$$\frac{\lambda_{1}e_{k_{m}}+\lambda_{2}e_{k_{m-1}}}{t} \in \text{span } \{e_{0},e_{k_{1}},e_{k_{2}},\cdots e_{k_{k_{k}}}\}$$

Now, use a similar process to that in [1], it is easy to show that U^* span $\{e_{k,-1}, i=1,2,\cdots m\}$ span $\{e_{k,-1}i=1,2,\cdots m\}$

If $k_1 \neq 1$, then $e_0 \in \{\text{span } \{e_{k_i-1}i = 1, 2, \dots, m\}\}^{\perp}$, but the later is an invariant subspace of U, since e_0 is outer, this is impossible [6].

If $k_1 = 1$.

Put $V = \{ \text{span} \{ e_{k_i-1}, i = 1, 2, \dots, m \} \}^{\perp}$, there exists an inner function Ψ such taht,

i.e. $\langle e_{k_i-1}, \psi \mathbf{H}^2 \rangle = 0, i = 1, 2, \dots, m$

It is easy to see that ψ must be with finite Blaschke product. Assume the zeros are a_1, a_2, \dots, a_m (in fact, the Blaschke product parts of ψ must be of order m), there exists $\beta_1, \beta_2, \dots, \beta_m$ s.t.

$$e_0 = \sum_{i=1}^{m} \frac{\beta_i}{1 - \overline{a}_i t}$$

$$= \frac{\beta_1 (1 - \overline{a}_2 t) \cdots (1 - \overline{a}_m t) + \cdots + \beta_m (1 - \overline{a}_1 t) \cdots (1 - \overline{a}_{m-1} t)}{(1 - \overline{a}_1 t) (1 - \overline{a}_2 t) \cdots (1 - \overline{a}_m t)}$$

$$= \frac{P(t)}{(1 - \overline{a}_1 t) (1 - \overline{a}_2 t) \cdots (1 - \overline{a}_m t)}$$

By Lemma 2.

$$\varphi = r \cdot \frac{te_0}{e_0}$$

$$= r \cdot t \cdot \frac{P(t)}{\overline{P(t)}} \cdot \frac{(t - a_1) (t - a_2) \cdots (t - a_m)}{(1 - \overline{a}_1 t) (1 - \overline{a}_2 t) \cdots (1 - \overline{a}_m t)}$$

161

$$P(t) = A_0(t - A_1) (t - A_2) \cdots (t - A_{m-1})$$

since e_0 is outer, $|A_j| \ge 1$, $j = 1, 2, \dots, m-1$.

$$\frac{P(t)}{\overline{P(t)}} = \frac{A_0(t-A_1)(t-A_2)\cdots(t-A_{m-1})}{\overline{A_0(\overline{t}-\overline{A_1})(\overline{t}-\overline{A_2})\cdots(\overline{t}-\overline{A_{m-1}})}}$$

If for some j, $|A_j| > 1$, then

$$\frac{t-A_{j}}{\overline{t-A_{j}}} = \frac{A_{j}(\frac{1}{A_{j}}t-1)}{\overline{t}\overline{A_{j}}(\frac{1}{\overline{A_{j}}}-t)} = t\frac{A_{j}}{\overline{A_{j}}}(\frac{1-\frac{1}{A_{j}}t}{t-\frac{1}{\overline{A_{j}}}})$$

If for some j, $|A_j| = 1$, then

$$\frac{t-A_j}{\overline{t}-\overline{A_j}} = \frac{A_j}{\overline{t}}(\frac{\overline{A_j}t-1}{1-\overline{A_j}t}) = -tA_j$$

So $\frac{P(t)}{P(t)} = t^l \cdot \mathbf{B} \cdot \mathbf{S}$ where **B** and $\overline{\mathbf{S}}$ are finite Blaschke products and $0 \le l \le m-1$.

Therefore
$$\Phi = rt^{l+1}\mathbf{B}\cdot\mathbf{S}\cdot\frac{(t-a_1)(t-a_2)\cdots(t-a_m)}{(1-\overline{a_1}t)(1-\overline{a_2}t)\cdots(1-\overline{a_m}t)} = \mathbf{Q}\cdot\mathbf{R}$$

where Q and \overline{R} are finite Blaschke products. By [7], T_{φ} must be a partial isometry, by Lemma 5, this is impossible except the trivial case.

We can only have

$$a_0 \neq a_n$$
 $n = 1, 2, \cdots$.

Thus completes the proof

Corollary 1. If the weight sequence $\{a_n\}_{n=0}^{\infty}$ of the shift T is convergent ant $T \cong T_{\bullet}$ then

$$1-a_n^2=(1-a_0^2)^{n+1} \quad \forall n > 0$$

Proof. Without loss of generality, we assume $\lim_{n\to\infty} a_n = 1$. By Lemma 5, the set $N = \{k : a_k = a_0\}$ must be finite and by [8] we have $|\varphi| = 1$ a.e. So we get the conclusion.

The authors are grateful to Prof. Sun Shunhua for his suggestions and encouragement.

References

- [1] Sun Shunhua, On hyponormal weighted shift (II), Chin. Ann. of Math. 6B (1985), 231—
- [2] Halmos, P.R., Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76(1970), 887-933.
- [3] Shields, A.L., Weighted shift operators and analytic function theory, Math. Surveys Amer. Soc., 13, 49-128.
- [4] Douglas, G., Banach Algebra Techniques in Operator Theory, Academic press, New York, 1972.
- [5] Conway, J., Subnormal Operators, Research Notes, Vol. 50.
- [6] Hoffman, K., Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, 1962.
 New Jersey.
- [7] Brown, A and Douglas R.G., Partially isometric Toeplitz operators, Proc. Amer. Math.Soc., 16(1965), 681—682.
- [8] Halmos, P.R., A Hilbert space problem book, Springer Verlag, 1974.