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Abstract . In this paper, we study the unilateral weighted shift which is
unitarily equivalent to a Toeplitz opérator and prove a similar result to that in
[ 1] without the hypothesis that the shift must be hyponormal., As a corollary,
we show that if the weight sequehce {a,,}\':i0 of the shift is convergent, then
1-a’= (1 -a} v >0
| . Introduction. Proof . Sun Shunhua proved in [ 1 ] the following result:a
hyponormal unilateral weighted shift is unitarily equivalent to a Toeplitz operator

)nﬂ

if and only if the weight sequence {a,,}':°=0satisfies
1= la,P= (1= laolH™  yn>0

by which we can immediately give the negative answer of question 5 that Halmos
rises in 1970 [ 2 ], i.e. There is subnormal Teoplitz operator which is neither
normal nor analytic. What we are interested in is: Is the hypothesis in [ 1 ] that
the weighted shift be hyponormal necessary? We shall not consider the trivial
case when T is an isometry and consequently ¢ is analytic,

Our main result includes

Theorem |. If an unilateral weighted shift T=T, |p|=1 a.e. The weight
sequence of T is {a,};>,and the set N={k:a,=a,} is finite, then

. 1-al=(1-ad)"" yn>0

Corollary |, If the weight sequence {a,,}’:°=00f the shift T is convergent and
T=T, then 1-a’=(1-a)"" yn>0

2. Lemmas. Let D be the unit disk in the complex plane, 9D be the unit
circle. L”(dD) and L?(D) be the bounded measurable function space and square
integrable function space on the unit circle, H (D), H*(dD) be ordinary Hardy
spaces. We shall denote them by L™, L? H™, H?.
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Let T be an unilateral weighed shift on H’> with weight sequence {a,,}':":o .

We can assume a,>0 yn>0 [ 371. If T is unitarily equivalent to a Toeplitz ope-

rator on H?, then there exists an orthornormal basis {e,,}i":0 of H? and ¢eL°° such
that Te,=T,e,=a,e,. yh>0

Note : Now we have a,+0 yan>0 [4].

Lemma |. For a fixed k and an element xeH?, if

* _ 2
Twwa = apXx
then x= iZ::Ox,.ekl

where k; satisfy a,=a, i=0,1,2,%

Proof ., See [5]. '

Lemma 2. If |p|=1 a.e. then e, is an outer function and ¢ =r(te,/e,),
where r is a constant and |r|=1,

Proof. See [1].

Lemma 3., If weLw and z/;eHz, then :/)eHm.

Proof. See [1 ].

3. Proof of the theorem.

Theorem |. If an unilateral weighted shift T=T, |p|=§ a.e. the weight
sequence of T is {a,,}':°:0 and the set N={k:a,=a,} is finite, then
1-a’=-a)"" yn>0
Proof . Since
ge,=af,t (1 —a:)l/z”n
pe,. =ae,+ (1-ad'?¢,
navén€Hy and lnall = 1&al =1
we have te,=apte,, +(1-ay ’g+r¢,
it is easy to show by computation that
. T:Tvﬁn:ait_"n
Therefore, by Lamma |

(e o]
tn,=),ae, where a,=q, i=0,1,2,¢
i=0 ! !

Note. We put e, =€, .
For the first step, we assume agFa, yn>0
therefore THo=a4es No=0ag€o lao]=1
pey=age, + (1 —aé)”za—we_o
teg — ——
by Lemma 2, Qo=r e @e,=rteg
combine these two equalities and by Lemma 3,we have

@y /2 — 0o
qp-—_r_g(l—a;)l zweH
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» B .

- . L a —
ie. (pe,.—%(l'" al)’* pe,
2,172 ..; A2 2.\ 1/2, .
=a,,e‘,,,,1+ (1 —a")l )7,,"_7‘0“ 1" ao’)l Z[a,,_le,,_l + (l—a:_|)l 2;,,-]](“2

a bl
SO (1- af,)"/zn,,‘—%.’(l —a(z,)'/z(l —a,‘,_',)m§,._'| =0

- 1-ai=Q-a)"™ yn>p
l' Before our second step, we need the following two Lemmas.

Lemma 4, If T,e,=Te,=a,e,, yn>>0 and |p|=1 a.e. then the vector ({gte,
125 pteg s 100, {pte, , 175 °°*) (obvious]y, it belohgs to I?) can not be a zero vec-
tor, where To,ek'_=a,‘,’eki“=aoe’k,+l and ¢ ) represents the inner product in LZ.

Proof, Put n=0in (1) we have

Yo, _
€y €, teo
€ €+ 2,172 [

o| ¢ l=ao| |+ -ap!w|h
€, €k,+1 ! :ek,,
L P .

it is easy to see that W is an unitary operator on the subspace V =span {Ze,, FE,q,

seste, ,+++ |} Inner products with 1, we get
(ptey 1) ee(0)

{ote, , 17 e, (0)
27 = Gmapt ) R
<<ptek . l> ekm(O')

since e, is outer, the left side cannot be a zero vector.

- Lemma 5, With the same conditions as in Lemma 4, we have 4,71 ya>

Proof. Assume g,=1 for some k£, by (1), we have
Te.=pe,=e .,

put M = {xeH?:pxe¢H?}, then M is a non -trivial invariant subspace of U (the

multiplicate operator M, on H?), Therefore, there exists an inner function y

such that : M =yH? ‘
So @=yy where y is an inner function, by [ 7], T, is a partial isometry, this
is impossible except a,=1 yn >0 (which is a trivial case for the whole theorem).

Now we turn to prove our theorem, put N ={k:a,=a,} N is a finite set ,

assume N = lkg, ky, k,, ==k} and k=0 .
we are going to prove that N contains only one element .
- Because
* & 2
T,T,= 3 a,e.Qe,
=0

UT,TU =TT +U'T,1QU" T, 1
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and 1= igﬂ(o)eﬂ T:1 = ien(O)an—len—l = E en+'1 (0)0,,é,, '
n=9 n=9 n=0
we have
Yale,Qe, =3 aU e, QU ,~ 3. GU T 1Ye, (Da,Ue,
n=0 n=0 n=0
= S 0aX, U,y -G U T 1Y e, (0)a, U e, (2)
n=9
therefore  agre, =§Otai<-'teo, en) —<teo, Ta1Ye,n(Danle,”
- ¥ takuey,e,5 ~<tey, T, 1>e,,,(0)a,Je,(0)
n=0
inner products with e,
a§<f6‘0, ey = a§<teo, ey —{pteg, 17e1(0)ay
- {ita,f("teo, e,y —{otey, Ve, (0)a,le,(0)}e(0)
n=9
we have
ag+ e = i[akteo, e.r —{ptey, 17e,, (O)a,,]’en’f—-l—)wteo, 1>age(0) (3)
n=g .

0

A
If T(,,e,c,zaoe,wl i=0,1,+, m. Inner products e, with (3), we get

aé{ teg, €, ) = alire, e.> ~alpleg 1€,  (0)+

e

1

0(0-)<<pteo, 1age,(0) e, (0)

(pteg, 1€, . (0) eq(0) =< pte,, 1)€,(0) ¢;(0)
by Lemma 4, <¢”"’k,’ 1> i=0,1,2,°s, m can not be all zeros. Without loss of gene
rality we assume <{pfe,, 1>==0 then we have eo(O)ekﬂ(O)=e1(0)ek'_(0) it follows

that
i) if e,(0) =0, then ekiﬂ(o) =0, i=0,1,2,m,.
ii)if e,(0)=£0, then
e (0)

ek,+1<0) 2e(0)

=——e, (0), i=0,1,

2,%m . (4)

Consider the subspace spaned by {eo,ekl,ekz,---ek } choose 1, and A,such that

g, (0) + 4 (0)=0
ey + e

2
7 ¢eH

SO

we have
llek,f Azekm_l
t

*

LN 4

by (5) we have
llekmﬂ + }'Zekm_, +

- T*U* .
=a,T U (/1,ek”"l Ay 4

(5)

)

1

U*(;tlekmi-l_’—izekml*'l): 7

—224 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



therefore

T*T A] ekm+ lzek”hl _ 2 Al ekm+ lzekm_l
[l 4 t =aq t
}'l ekm+ Azek»._,
espan {e,, € €k, ---ekh}

t
Now, use a similar process to that in [ 1], it is easy to show that
U”span {eg _pi= 1,2,»+m}Cspan {e, _i=1,2,+m}
If k,=#1, then eye {span {ek,_lizl,z,m,m}}i, but the later is an invariant sub-
space of U, since e, is outer, this is impossible [ 6].

If k] =1, : .
Put V ={span {e, po E=1,2,00, m}}l, there exists an inner function ¥ such

' V=yH?,
(ep .y YHD =0, i=1,2,%,m
It is easy to see that y must be with finite Blaschke product. Assume the
ZEeTOs are a,,a,,**,a, (in fact, the Blaschke product parts of ¢ must be of order

taht ,

i.e.

m), there exists f,, f3,°, f, s=t.

n, B

i=t 1-;,I

B —agt) e (1= aut) vt Bl —ait)o (1 —a, 1
(1_.(71’)(1 _Ezt)"'(l"—t_{mt)

€y =

P(r)
(1-at)(1—azt)e=(1—au)

By Lemma 2,

-, teo
g=r €o

3 - P@) (—ay)@—ay)e(t—a,)
P(t) (1=a,1) (1—ayt)ees (1 —a,t)

let P(t)=Ay(t~A) (t—-Ap(t—A4,,)
¥ since €, is outer, IA.I|>1’ j:1,2,-..,m—1.
P(r)  A(t—A) (—Aye(t-A4,,)

P(t) A(-A) T-A)-(T-A4,)

If for some j, |A4;|>1, then
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Y . o
%:—; =t'-B-S where B and S are finite Blaschke products and o</<m-1.

(t—a)) (t—ay)e(t—a,)
(1-a;1) (1 —azt)eee (1 —aut)
where Q and R are finite Blaschke products. By [ 7], T, must be a partial iso-

Therefore &=rt""B-S- =Q-R

metry, by Lemma 5, this is impossible except the trivial case.

We can only have

agta,” n=1,2,%.

Thus completes: the proof .

Corollary |. If the weight sequence (a,,}":"zo of the shift T is convergent ant
T =T, then

l—ai‘—*(l—af,)"+l yn >0

Proof. Without loss of generality, we assume lima,=}], By Lemma 5, the

n-=o0

‘set N={k:a,=a,} must be finite and by [ 8 ] we have |p|=1 a.e. So we get

the conclusion.

The authors are grateful to Prof . Sun Shunhua for his suggestions and encouragement .
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