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In recent years, F,E. Browder has constructed the topological degree for non-
linear monotone mappings (22033, In the paper [1], we have introduced the
classes of mappings of type (S): and of type quasi- (S): and the conéept of
weakly -demicontinuity and we have constructed the generalized topologicél deg -
ree for these classes of mappings . Some important results in [ 2] and [ 3 ] have
been improved in [1 ]. But, many problems in partial differential equations and
integral equations may be described in term of seeking a solution of an abstract
equation

geTx+ fx ‘ (1)
where T is a maximal monotone mapping of Banach space X to 2"', f a mapp--
ing of X to its dual space X and geX" is given. For reason given above, first
author of this paper and Browder have researched independently the topological
degree for perturbed maximal monotone mappings T + f{2*(31157 However, it
is assumed acctually that the space X is separable in [ 5], and the mapping f
is. considered only to be demicontinuous and bounded pseudomonotone in [ 2]
and [ 373. In this paper, we shall continue the work in [ 1 ]; First, we shall
construct the generalized topological degree for the sum T+ f, where T is
maximal monotone and f:Q( X—>X"a finitely continuous and quasibounded
mapping of type quasi - (S): . Theorem 2 in [1 ] has shown that the mappings
of type quasi- (S): include of type quasibounded pseudomonotone, quasibounded
generalized pseudomonotone, weakly-demicontinuous (S): and of type (P). The
mappings f considered by us is much broader than that fin [2 ] and [3].
Our results extend and imprbve the degree theory constructed in [2 }—[5]. We
eliminate the restriction of separability of space in [ 5 ]. Second, we obtain some
new results for surjectivity and solvability of the equation (1) by using our
degree theory.

* Received, May, 14, 1987.
* The paper is sabsidized by the nationay fundation of natural science,
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§ | The construction of degree function for
perturbed maximal monotone mappings

Throughout this paper, X denotes a reflexive Banach space, X" its dual
space and “-" and ¢ —~” denote strong and weak convergence, respectively.

In this section, we shall consider the topological degree for the sum T + f,
where T :X—»zx. is a maximal monotone mapping and f:Q —X"* a finitly conti
nuous and quasibounded mapping of type quasi—(S):. First, we constructed the
-topological degree for T + f when f is a mapping of type (S): .

Deflnltfonl ([21). Let {T,}, ¢, be a family of mappings from X to 2

{'l‘,}“w'13 is said to be a pseudomonotone homotopy, if for any {t,,}C[o,llj, t,>
t, (u,, w,1¢G(T,), u,~u, w,~w and Tim(w,, u,)<(w, u), we have weT,(u) and

XO

Wy up) > (w, u) . _

Lemma | (C27). Let {T,}“[M]be a pseudomonotone homotopy of maximal
monotone mappings from X to 2X° with ¢eT,(0) for all re[0,1]. Suppose {u,|C
X, u,~~u, {t,3CL0, 10, 1,71, 6,0, 8,0, £,~0, 6,0, Let V,=T, ), Z,=
T, s (u,). where T, = (T,'+¢J7)™ (J is the normalized duality mapping of X,
S0 is'in what following) . If there exists {s,}C[0,1] such that w,= (1 - 5,0V, +
5,2, w,>weX” and Tim (w,, u,) <(w,u), we have weTe(u) and (w,, u,)—>(w, u).

The following lemma can be proved easily "by the definitions given in the
paper [1].

Lemma 2, Let T, and T, be maximal monotone mappings from X to x*
with T;(0) =T(0) = 0.D(T,) =D (T,) =X.Q CX a bounded open set, and f:Q—+xX*
a weakly -demicontinuous mapping of type (S):. Then {f+tT+ (1-£)Ta},qy.;18
a homotopy of type (S):.

Theorem |. Let T:X—»zx' be a maximal monotone mapping with 0¢T (0),
QCX abounded open set, and f:0-—>X" a finitely continuous and weakly -demico -
ntinuous quasibounded mapping of type (S): For each ¢>¢,let T,=(T"'+eJ™)™

(Yosida approximant of T), Then ‘
(i) If yeeX*, yo€(T + f) (3Q), then there exist ¢, >0 such that for 0<(e, 8
£ 1€[0,11. we have ye (r(Ty+f)+ (1 -1) (T, + f)) @D)s ‘
(ii) For each ¢ >0,T,+ f:9->X" is a weakly-demicontinuous mapping of
type (S)*. Hence, deg (T +/, 9, y,) is well-defined for 0<¢e <¢o. Moreover,
deg (T, + f,Q, y,) is independent of e¢ (0,&0) .

Proof . (i) If the conclusion is false, then there exist {u,}C0Q, ¢,—>0, &,
—0 and {r,}C[0,1] such that ,—~u and 7, T, (u,)+ (1-1,)T, (u,) + f(u,) =y, . By
0¢T (0), we have (1,T;u,)+ (1-2,)T (u,),u,)<0. Thus, (f@,)5u,)< (Yo, un)<

Iyollu.l Since f is quasibounded, there exists a subsequence {f(«,)} of {f(u,)]
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such that f(u, )—ge X* . Hence, 1, T3, (u, ) + (1‘—t,,k)Tenk,(u,,k)~—-yo-—g . By proposition
2 in the paper [ 1], we have lim (f (u,),u,~u)>0. So
ﬁ_n—l_(t,,de,,k(unk) + (U -1)Te,(uy), u, —u)
=li_m—(yo—f(um), U, ~u)=—lim (f(u, ), u, ~u)<0

{T,=T}“[O'1] is ‘a pseudomonotone homotopy in the sense of Definition 1, By
Lemma 1, y,-g¢T (u), lim (¢, T4, (u, )+ (1-¢,)Te, (u, ),u, —u) =0.Hence, .
lim (f("nk)’“m_") = 0. Because fis a weakly-demicontinuous mapping of type

(S):, we have u, ~uedQ, f(u,,k)-f(u) It follows that yue (T + f) (u), which
contradicts y, & (T + f) (3. |

(ii) By Lemma 2, T,+ f:2—>X" is a weakly-demicontinuous mapping of type
(S): for each ¢>0, and ‘
T+ f=y) + (A=) (T, + f=p0) b, 00 11= UTe+ (L= OT, + f=yol |
is a homotopy of type (S):. By the conclusion in (i), for 0<{e,d<gq, tel0,1],
0eLt(Ts+ f—y) + (1 =) (T, + f— yy)] (082) . From Theorem 6 in the paper [ 1 ],
we have }
deg (T, + f— »5, 2, 0) =deg (Ts+ f~ y5, 2, 0)
ie., C deg(T,+ £, @, o) =deg(T,+ £,@, 0) .
So deg (T, + f, Q, yo) is independent of ¢ in (0,5,). Q.E.D.
Definition 2. Let T:X-—»zx' be a maximal monotone mapping with 0¢T (0),
GCX a bounded open set, and f:0—>X"* a finitely continuous and weakly -demi -
continuous quasibounded mapping of type (S)7, T,=(T ' +eI ™)™, y&(T + /) @D .
we define
deg (T + £,Q, yo) =lei£13 deg (T, + £, Q, ¥o).

Remark |, We have constructed the topological degree for the sum T + f
by using Yosida approximation. Because we (‘iemand that f is quasibounded, the
degree theory foi' the sum T+ f can not include the topological degree constructed
for the mappings of type (S): in the paper [11].

In the following, we shall give the some properties on the topological degree
of mappings of type T+ f.

Theorcm 2 (Solvability). Let T:X-—»zx. be a maximal monotone mapping
with 0¢T (0), QCX a bounded open set, and f:0—X" a finitely continuous and
weakly -demicontinuous quasiboundgd mapping of type (S):. If deg (T + f, Q,
Yo)7£0. then yue (T+ f)(Q).

Proof . By Definition 2, there exists £,>0 such that deg (T,+ f,Q, ¥)=+¢
(¢€(0,60)). Let &,~0, by Theorem 4 in the paper [ 1], there exists {u,}Q such
that u,—~u and Te,(u,) + f(u,) =y, . Because (Te,(u,),u,) >0 and f is quasibounded,

we have a subsequence {f(u,)} of {f(u,)} such that f &, —~g. Thus, Te,(u, )~
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w=y,—g. Since
Hm (Te,(u,), uy—u) =lim (o= f(u,), uy~u) = —1im (f (u,), 4, ~u)<0

it follows le_(Te,,k(u,,A), u,,k—u)<Ti_m_(Ts,,(u,,),u,,—u)\<\0.
By Lemma {, weT (4), lim (Te,(u,),u, —u)=0. So lim (f(u,),u, —u)=90.
it follows u, »ueQ and Sfu,)—~f(u). Hence; 'yo=f (u) + we (T + /) (CT(T+ f) (@).
By the condition y,&(T + /) (3Q). we have ye (T+/f)(@2). Q.E.D.

In order to construct the homotopy’invariance, we make the following prepa -
ration ,

Definition 3. Let {f,}“[a’” be a family of the mappings from X to X*.
{f,}“[o’u is said to be unifom quasibounded. if for each M >, there exists a
C>>( such that for arbitrary t¢[0,1], when xeD (5,) and (f,(x),x)<M |x|, Ix}
<M . we have |f(x)]|<C.

Proposition §, Let f:X—>X* be a quasibounded mapping. Then {+f+ (1 -
1)) Jecto.17 is a famiiy of the uniform quasibounded mappings.

Proof . Let M >>(, Because f is quasiboundgd, there exists a C, >( such
that for xeD (7)), (f(x),x)<M|x| and |x|<M, we have |f(x)|<IC,. Let
C=max {M, C,;. For te(¢,1], xeD (f) and (tf(x)+ (1-DIx, x)<iM x|, we
have (f(x),x)< M {x{|. Hence, | f(x)[|<C,<<C. By |Ix|=|x|<M<C, we
obtain v f(x) + (1-DIx|<C. For t=0, |[tf(x)+ (1-Ix|=[Ix]|<C. So {¢f
+ (! —~t)J}“[0,”is 1:niform quasibonded. Q,E.D .

Lamma 3, Let {T,},dmjbe a pseudomonotone homotopy of maximal mono -
tone mappings from X to 2%°, and f:X->X" a bounded maximal monotone map-
ping with D (f) =X . Then {T,+f}“[0'1] is a pseudomonotone homotopy.

Proof. Let {r,; "[0,1], t,—~t, [, 0,]¢G(Tt,), u,~u, w,+ f(u,) ~g, and
Tim (0, + f(u,),u,y<(g,u). Because f is bounded, there exists a subsequence

{f(u,)} of {f(u,y} such that f(u,)—~g,. Thus, v, ~g- & =0. By lim (f(x,),
u, —u)>0, we have E?ﬁ—(“'m’ u, )< (@, u). From Definition, w¢T,,, lim(o,, 4, -
-u)=10, So lim(f(u*”), u,,k-~u)<0. Since f is maximal monotone mapping, we
have g, = f(4) and lim (f(u,,‘), u, —u) =0, Thus, g=f(u) +eoc(Tt +f) (), lim (o,
+ fuy )y uy ) = Cgyu)y. It follows lim (Q,+ f(u,)u,) = (g, u). By Definition |, we
know that the conclusion is true. Q.E.D.

Lemma 4. Let {Tr}«[o,u pe a family of the uniform bounded maximal mono -
tone mappings from X to X* with 0¢T,(0) and D(T,) =X for all re[0,1], and

{T,}“[O.ﬂa pseudomonotone homotopy, 90X a buunded open set, {f,}nmlja
homotopy of class (8)" from'@ to X*. Then {T/+ fi}yoy is a0 a homotopy of
class (S)" from pto X" . class

Proof . Similar to the proof of Lemma 3, we omit it., Q. E. D.

Theorem 3 (Homotopy invariance). Let Qe¢X be a bounded open set.
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{f,}“[o,lja family of uniform quasibounded and finitely conttnuus mappings, and
{fi}xo, 11 be @ homotopy of class (S)] from @ to X*, (T}, ;2 pseudomonotone
homotopy of maximal monotone mappings fro;n X to 2X" with 0¢T,(0) and 0€(T,
+f,) (0Q) for ali r€¢[0,1]. Then deg (T,+ f,,Q2, 0) is independent of re[0,1]. .

Proof ., (i) We prove that {T,,,+f,}“[0,l] is a homotopy of class (S): from
0 to X* for each £>0.

By {T,}“[O'U is a pseudomonotone homotopy and Definition 1, we know that

{T, Vrefo,1718 also pseudomonotone homotopy. From, Lemma 3, {T,' +6T Yo
is a pseudomonotone homotopy. Thus, {T,,,}K[OJ] is also a pseudomonotone
homotopy. Since { ,,}“[0 1718 uniform bounded for each ¢ >0, we know that

{T,,, f}' Co.11 is a homotopy of class (S) by Lamma 4.

(ii) We shall prove that there exists ¢,>0 such that 0€(T,,+ f,) (3Q) for
each ¢€(0,80) and deg (T,,,+f,,g, 0) is independent of te[o,lj and ¢€(0,¢,

Suppose that the conclusion is false. By Lemma 2 and Theorem 4 in the -
paper [11], there exist {£,}JC[0,1], €,>0,6,>0, 1,751, 6,0, ¢,~>0, u,cdQ and {s,)
C[0,1] such that (1-5,T, U, +s WX o (ua) + [ (u,y=0 (n= 1,2,%). 4

Let Q,= —f,"(.u"). Since 0¢T;.(0) for ¢>0 and re[0,1], we have (j;.(,u,,)',u,,)’<
0. By {fr}u[o,u is uniform quasibounded, we may assume u,—u and o,—~0. By -
Proposition 8 in the paper [1], Tim (Q,, u,—#) = —lim (f, wu,), u,~ u)<<0. From
Lemma |, we have Q¢T,(«) and lim (Q,, u,—u) =0.So lim (f; W,),u,—u) =0.Beca .
use {f}, ;35 @ homotopy of class (S)?, it follows u,~u and f,_(-un)—‘.ﬂ(li).
Thus, #ed32 and - f, () =QeT, (u). i.e. 0¢ (T, + f,) (32). which contradicts 0¢ (T, "
+f) D). Q.E.D.

Remark 2. Because the additivity of domam is similar to the paper [1],
we do not discuss it here . ‘

In the following, we consider the generalized topological degree for T + f- ‘
when f is a mapping of type quasi—(S):.

Theorem 4. Let QCX be a bounded open set, f:o—X" a finitely continuous
and quasibounded mapping of type quasi—(S):, and T:X—»zx'a maximal moho-
tone mapping with 0€T (0), ¥ (T + ) (3R) .Then

(i) There exists g >0 such that y (T + f+¢J) (08 for e€(0,80)3
(ii) deg (T + f+¢),Q, y,) is independent of e€ (0,¢0) .
Proof . (i) Because Q and J is bounded, there exists &,>0 such that yee(T +
f+el) (09 for e€(0,e0). Thus, deg (T + f+¢],Q, yo) is well-defined.
(ii) For 0<e<go, 0<6<g, and re[0,1], we obtain
T+ f+e+(Q ) (T+f+) =T+ f+ (te+ (1 —-1))].
So Vo€ (T + frel)+ (1-)(T+f+61)) 0 .
i.e. 06 (T+ (f— yp) + e+ (1 1)) Q) .
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By Lamma 2 and Theorem 3, we have
deg (T+ f+eJ - yy, @2, 0)=deg (T + f+3) - ¥5,Q, 0) .
Hence, deg (T+ f+ 1,2, yo) =deg (T + f+ 61, 2, y,) Q.E.D.
Definition 4. Let QCX be a bounded open set, f:0—X*a finitely conti;
nuous and quasibounded mapping of type quasi—(S):, and T:X—»zx’a maximal
monotone mapping with 0€¢T (0), yoe (T + /) (09) (8Q). We define
deg (T + £,Q2, yo) =lim deg (T + f+¢J,Q2, y).

e=0

In the following, we give two properties for the degree function. The proofs
are omitted .

Theorem § (Solvability) Let QCX be a bounded open set, f:0>X"a fini-,
tely continuous and quasibounded mapping of type quasi -(S):, and ’I‘:X»zx'a
maximal monotone mapping with 0¢T (0). If deg(T+ £,9, ¥9)#0, then yue (T +
. -

Theorem § (Homotopy invariance) Let (T,}

Lo 1]b’e a pseudomonotone homo-
topy of maximal monotone mappings from X to zx' with 0eT,(0) (rel0,1]), QC

X a bounded open set, and {f,} ,a homo topy of class quasi—(S): from O to X*

1€[0,1
and uniform quasibouded, there exists r >0 such that B (0,r) (T, + f) (3 =¢
(te[0,11) Then “deg(T,+ f,,Q, 0) is independent of re¢[0,1].

Remark 3. The topological degree for T+ f had been constructedin the
paper [ 2] and [ 3] when f is a bounded and demicontinuous pseudomonotone
mapping. In this section, we extend f to a finitely continuous and quasibounded
mapping of type quasi-(S ):. Because zero mapping is of type quasi—(S):. the
topological degree for T + f is the topological degree for T when f= g, where T
is a maximal monotone mapping. The topologcial degree for T had been construc
ted in the paper [ 4] when X is a separable Hilbert space and int D (T)=+¢.

Hence, we also extend the degree theory constructed in the paper [4].
§ 2 Solvability and Surjectivity

In this section, we shall prove some results for solvability and surjectivity
by using the degree theory constructed in the paper [ 1] and §1.

Definition 5. Let f:X >X". f is called to satisfy condition (Q), if for {x,}
CD(f)y x,~xeeD(f) and f(x,) »y, we have f(xy)=y,.

Lemma 5. Let QCX be a bounded convex set, and f:2 ~X" satisfy condi -
tion (Q). Then F(QC ().

Proof. Let y,c f(Q). Since 2 is a bounded convex set, we have {x,]C Q
such that x, ~x¢Q, f{(x,)—>y,. By condition (Q), y,= f(x). Hence yue f(Q.

Q.E.D.
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Theorem 7. Let QX a bounded open convex set, and f:0—>X" a finitely
continuous mapping of type quasi-(S).. For geX". there exist r >0 and c¢>|g]
such that B (0,r)C Q. (f(x),x)>c|x| (xedB(0,r)). Then

(i) gef(B(0,r s
(ii) When f satisfies condition (Q), the equation f(x)=g has at least a
solution in B (9,r). |

Proof . Let f,(x)=t(f(x)-g)+(1-0)Ix, te[0,1], x<B(0,r). By Theorem 9
in the paper (11, {f,, ,;is 2 homotopy of type quasi—(,S):. For xe¢dB (0,r).

(fU(x), x)=t(f(x)-g, x)+ (1 -t)Ux, x)>min{ - |gl, r}|x] .
So B (0,8)Nf,(dB(0,r))=¢, te[0,1], S=%min{¢"— lgl, 7}>>0,By Theorem 10 in
the paper [1].

deg(f-g,B (0,n, 0) =deg (J,B (0,r), 0) = 1.
Thus, deg(f,B(0,r),&)+0. By Theorem 8 in the paper [1 ], we have gef(B (0,
). :

If f satisfies condition (Q). By Lemma 5 and g<f(@B (0,r)), we have
gef(B(0,r)). i.e. f(x)=g has at least a solution in B (0,r).

Corollary |. Let QCX be a bounded open convex set, and f:Q+>X"* a fini-
tely continuous mapping. For geX"*, there exist r>0 and ¢ > |g] such that B (g,
rCQ, (f(x),x)>¢ |x| (xedB (0,r)). If f satisfies one of the following condi-
tions: ' ;

(i) fis a quasibounded generalized pseudomonotone mapping,
(ii) f is a demicontinuous pseudomonotone mapping, then the equation
f(x) =g has at least a solution in B (0,r).

Proof. By Theorem 2 in the paper [1 ], we have that f is a mapping of
type quasi—(S):. We can prove ea‘sily that f satisfies the condition (Q). From
Theorem 7, we know that the conclusion is true. Q.E.D.

We can obtain the following result from Theorem 7.

Theorem 8 Let f:X—X"* be a finitely continuous and coercive mapping of
type quasi —(S):, D(f)=X. Then '

(i) R(H=X".
(ii) When f satisf'ies the condition (Q), R (f)=X".

Corollary 2. Let f:X-—>X* be a demicontinuous and coercive mapping of
type (P) with D(f)=X. Then R(f)=X".

Corollary 3. Let f:X—>X* be a coercive mapping with D(f)=X. If f satis-
fies one of the following conditions:

(i) f is a finitely continuous and quasibounded generalized pseudomonotone
mapping;
(ii) f is a demicontinuous pseudomonotone mapping, Then R (f) = X",
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In the following, we shall consider the surjectivity for the sum of two mapp-
ings .

Definition . Let f:X >X". f is called to satisfy condition (G), if for {x,}
CD(f), x,~xeD(f), f(x,)—~geX* and lim (f(x,),x,—x) =0, we have f(x)=g.

By Definition 5 and Definition 6§, we know that the condition (Q) is weaker
than the condition (G).

Lemma 6. Let T:X»zx. be a maximal monotone mapping with 9¢D(T),
QCX a bounded convex set, and f:0—>X" a quasibounded mapping of type
quasi -(S)] with the condition (G). Then (T+/)@C(T+f)®).

Proof . Let ye (T+ f) (Q). Since @ is a bounded convex set, there exists {x,}
C Q such that x,~xe¢Q and g,+ f(xn)—4y0, y.€T (x,). Thus, lim (g,+ f(x,), x,— x)
=0 and there exists M >0 such that (g,+ f(x,),x,)<M|x,| (n=1,2,+). Let gye
T (0), then (Fx), x) <M|x, b+ lgolllxall = (M + |go ) Ixnll (n=1,2,00).

By Theorem 1 in the paper [ 1], lim (f(x,), x,~x)>0. Since lim (g,, x,-x) >0,
we have lim (f(x,),x,~x)=0 and lim(g,, x,—-x) = 0. Because f is quasibounded,
there exists a subsequence {f(x,,k)} of {f(x,)} such that f(x,,k)—~geX'. By the
condilion (G), we have g=f(x). Hence, &, Yo~ f(x). it follows y,— f(x)eTx.
ie. ye(T+f)(X)C(T+[) (. Q.E.D.

Theorem g, Let T:X—»Zx.be a maximal monotone mapping with 0e¢D (T),
Q@CX a bounded open convex set, and f:0>X* a finitely continuous and quasi-
bounded mapping of type quasi—(S'): with ;he condition (G). For geX* and gge
T (0). If there exist r >0 and c> |lg| + llgo] such that B(0,r)C@. (f(x),x)>c|x|

(x€dB(0,r)). Then the equation ge(T + f)(x) has at least a solution in B(0,r).
Proof. We write T,=T-Y,, then T, is a maximal monotone mapping with
0eT,(0) . Let T,=(T,"+AJ™") ™
£, =t(T3(x) + f(x) —g+go+elx) + (1 -)Ix, xeB(0,r), £>0.
By Theorem 5 in the paper (1], {fi}, [, ,is a homotopy of class (S)? for each
¢>0.For xedB (0,r),
(f,(x), X) =t (T (x)+ f(x)—g+go+elx,x) +(1-1) Ux, x) .
>t(f(x) —g+ge,x)+(1-1) Jx, x)
>min{c - |g]- lgoll, r} Ix].
So B(0,s)N f,®B(0,r)) =¢, where S_=—-21—min {c- |el - lgol, r}. By Theorem 6 in
the paper [1].
deg (T, + f+&l— g+ g B(0,r),0) =deg (T, B(0,r), 0)=1.
ie. deg (T,+ f+e),B(0,r), g~ &) =1, A>0, £¢>0.
Hence  deg(T,+ f+el,B(0,r), g2y =limdeg (Ty+ f+el, B(O,r),g—80) = 1.

deg (T, + f,B(0,7), g~ &) =limdeg (T, + f+ &), B(0,r), 8- &) = 1.
&0
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By Theorem 5, g— g, (T+ f) (B(0,r)). From Lemma 6 and g—gq (T, + f) @B(0,r)).
we have g- g, (T, +f)(B(0,r)). Hence, ge(T+ f)(B(0,r)). Q.E.D.

Corollary 4. Let T:X»zx‘ be a maximal monotone mapping with 0eD(T),
QCX a bounded oren convex set, and f:(Q—>X"* a finitely continuous and quasi-
bounded geperalized pseudomonotone mapping. Fro geX* and 8T (0), there
exist r>0 and c> |g| + |g, | such that B(0,r)C®, (f(x),x)>c|x]| (xedB(o,r)).
Then the equation ge (T + f) (x) has at least a solution in B(0,r).

By Theorem 9, we can obtain the following result,

Theorem Q. Let T:X—»zx. be a maximal monotone mapping with 0¢D(T),
and f:X—X" a finitely continuous and quasibounded mapping of type quasi—(S):
with D(f) =X,. f satisfy the condition (G) and be coercive. Then R (T + f) =X".

Corollary 5. Let T:X—»zx_»' be a maximal monotone mapping with 0¢D(T),
and f:X—>X" a finitely continuous and quasibounded generalized pseudomonotone
mapping with D(f)=X. If f is coercive, then R(T+ f) =X".

Remark 4. The other proofs of Corollary 2, Corollary 3 and Corollary 5 can
be found in the‘paper [8].
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