Journal of Mathematical Research and Exposition Vol.9, No.2, May, 1989.

On the Generalized Topological Degree for Perturbed Maximal Monotone Mappings*

Zhao Yichun (赵义纯) Yang Guanghong (杨光红)

(Department of Mathematics, Northeast University of Technology)

In recent years, F.E. Browder has constructed the topological degree for non-linear monotone mappings [2],[3]. In the paper [1], we have introduced the classes of mappings of type $(S)_{+}^{*}$ and of type quasi- $(S)_{+}^{*}$ and the concept of weakly-demicontinuity and we have constructed the generalized topological degree for these classes of mappings. Some important results in [2] and [3] have been improved in [1]. But, many problems in partial differential equations and integral equations may be described in term of seeking a solution of an abstract equation

$$g \in \mathbf{T} x + f x \tag{1}$$

where T is a maximal monotone mapping of Banach space X to $2^{X'}$, f a mapping of X to its dual space X and $g \in X^*$ is given. For reason given above, first author of this paper and Browder have researched independently the topological degree for perturbed maximal monotone mappings $T + f^{[2],[3],[5]}$. However, it is assumed acctually that the space X is separable in [5], and the mapping fis considered only to be demicontinuous and bounded pseudomonotone in [2] and [3]. In this paper, we shall continue the work in [1]. First, we shall construct the generalized topological degree for the sum T+f, where T is maximal monotone and $f: \overline{Q} \subset X \to X^*$ a finitely continuous and quasibounded mapping of type quasi - (S)*. Theorem 2 in [1] has shown that the mappings of type quasi-(S) include of type quasibounded pseudomonotone, quasibounded generalized pseudomonotone, weakly-demicontinuous $(S)^*$ and of type (P). The mappings f considered by us is much broader than that f in [2] and [3]. Our results extend and improve the degree theory constructed in [2]—[5]. We eliminate the restriction of separability of space in [5]. Second, we obtain some new results for surjectivity and solvability of the equation (1) by using our degree theory.

^{*} Received, May, 14, 1987.

^{*} The paper is sabsidized by the national fundation of natural science.

§ 1 The construction of degree function for perturbed maximal monotone mappings

Throughout this paper, X denotes a reflexive Banach space, X^* its dual space and " \rightarrow " and " \rightarrow " denote strong and weak convergence, respectively.

In this section, we shall consider the topological degree for the sum T + f, where $T: X \to 2^{X^*}$ is a maximal monotone mapping and $f: \overline{\Omega} \to X^*$ a finitly continuous and quasibounded mapping of type quasi- $(S)^*_+$. First, we constructed the topological degree for T + f when f is a mapping of type $(S)^*_+$.

Definition! ([2]). Let $\{T_t\}_{t\in[0,1]}$ be a family of mappings from X to 2^{X^*} . $\{T_t\}_{t\in[0,1]}$ is said to be a pseudomonotone homotopy, if for any $\{t_n\}\subset[0,1]$, $t_n\to t$, $[u_n, w_n]\in G(T_n)$, $u_n\to u$, $w_n\to w$ and $\overline{\lim}(w_n, u_n)\leqslant(w, u)$, we have $w\in T_t(u)$ and $(w_n, u_n)\to(w, u)$.

Lemma ! ([2]). Let $\{T_t\}_{t\in[0,1]}$ be a pseudomonotone homotopy of maximal monotone mappings from X to 2^{X^*} with $0\in T_t(0)$ for all $t\in[0,1]$. Suppose $\{u_n|\subset X$, $u_n\to u$, $\{t_n\}\subset[0,1]$, $t_n\to t$, $\epsilon_n>0$, $\delta_n>0$, $\epsilon_n\to 0$, $\delta_n\to 0$, Let $V_n=T_{t_n,\epsilon_n}(u_n)$, $Z_n=T_{t_n,\delta_n}(u_n)$. where $T_{t,\epsilon}=(T_t^{-1}+\epsilon J^{-1})^{-1}$ (J is the normalized duality mapping of X, so is in what following). If there exists $\{s_n\}\subset[0,1]$ such that $w_n=(1-s_n)V_n+s_nZ_m$, $w_n\to w\in X^*$ and $\overline{\lim}(w_n,u_n)<(w,u)$, we have $w\in T_t\in(u)$ and $(w_n,u_n)\to(w,u)$.

The following lemma can be proved easily by the definitions given in the paper [1].

Lemma 2. Let T_1 and T_2 be maximal monotone mappings from X to X^* with $T_1(0) = T_2(0) = 0$, $D(T_1) = D(T_2) = X$, $\Omega \subset X$ a bounded open set, and $f: \overline{\Omega} \to X^*$ a weakly-demicontinuous mapping of type $(S)^*_+$. Then $\{f + tT_1 + (1-t)T_2\}_{t \in [0,1]}$ is a homotopy of type $(S)^*_+$.

Theorem 1. Let $T: X \to 2^{X^*}$ be a maximal monotone mapping with $0 \in T(0)$, $\Omega \subset X$ abounded open set, and $f: \overline{\Omega} \to X^*$ a finitely continuous and weakly demicontinuous quasibounded mapping of type $(S)^*$ For each $\varepsilon > 0$, let $T_{\varepsilon} = (T^{-1} + \varepsilon J^{-1})^{-1}$ (Yosida approximant of T). Then

- (i) If $y_0 \in X^*$, $y_0 \bar{\epsilon} (T + f) (\partial \Omega)$, then there exist $\epsilon_0 > 0$ such that for $0 < \epsilon$, $\delta < \epsilon_0$, $t \in [0,1]$. we have $y_0 \bar{\epsilon} (t(T_{\delta} + f) + (1-t)(T_{\epsilon} + f)) (\partial \Omega)$;
- (ii) For each $\varepsilon > 0$, $T_{\varepsilon} + f : \overline{\Omega} \to X^*$ is a weakly-demicontinuous mapping of type (S). Hence, deg $(T_{\varepsilon} + f, \Omega, y_0)$ is well-defined for $0 < \varepsilon < \varepsilon_0$. Moreover, deg $(T_{\varepsilon} + f, \Omega, y_0)$ is independent of $\varepsilon \in (0, \varepsilon_0)$.
- **Proof.** (i) If the conclusion is false, then there exist $\{u_n\} \subset \partial \Omega$, $\varepsilon_n \to 0$, $\delta_n \to 0$ and $\{t_n\} \subset [0,1]$ such that $u_n \to u$ and $t_n T_{\delta_n}(u_n) + (1-t_n) T_{\varepsilon_n}(u_n) + f(u_n) = y_0$. By $0 \in T(0)$, we have $(t_n T_{\delta_n}(u_n) + (1-t_n) T_{\varepsilon_n}(u_n), u_n) \leq 0$. Thus, $(f(u_n), u_n) \leq (y_0, u_n) \leq \|y_0\| \|u_n\|$ Since f is quasibounded, there exists a subsequence $\{f(u_n)\}$ of $\{f(u_n)\}$

such that $f(u_{n_k}) \to g \in X^*$. Hence, $t_{n_k} T \delta_{n_k}(u_{n_k}) + (1 - t_{n_k}) T \varepsilon_{n_k}(u_{n_k}) \to y_0 - g$. By proposition 2 in the paper [1], we have $\lim (f(u_n), u_n - u) \ge 0$. So

$$\frac{\overline{\lim} (t_{n_k} T \delta_{n_k}(u_{n_k}) + (1 - t_{n_k}) T \varepsilon_{n_k}(u_{n_k}), u_{n_k} - u)}{\overline{\lim} (y_0 - f(u_{n_k}), u_{n_k} - u) = -\underline{\lim} (f(u_{n_k}), u_{n_k} - u) \le 0}$$

 $\{T_t = T\}_{t \in [0,1]}$ is a pseudomonotone homotopy in the sense of Definition 1. By Lemma 1, $y_0 - g \in T(u)$, $\lim_{n_k} (t_{n_k} T \delta_{n_k}(u_{n_k}) + (1 - t_{n_k}) T \varepsilon_{n_k}(u_{n_k}), u_{n_k} - u) = 0$. Hence, $\lim_{n_k} (f(u_{n_k}), u_{n_k} - u) = 0$. Because f is a weakly-demicontinuous mapping of type $(S)_+^*$, we have $u_{n_k} \to u \in \partial \Omega$, $f(u_{n_k}) \to f(u)$. It follows that $y_0 \in (T + f)(u)$, which contradicts $y_0 \in (T + f)(\partial \Omega)$.

(ii) By Lemma 2. $T_{\varepsilon} + f: \overline{\Omega} \to X^*$ is a weakly-demicontinuous mapping of type $(S)^*$ for each $\varepsilon > 0$, and

 $\left\{t(\mathbf{T}_{\delta}+f-y_0)+(1-t)\left(\mathbf{T}_{\epsilon}+f-y_0\right)\right\}_{t\in[0,1]} = \left\{t\mathbf{T}_{\delta}+(1-t)\mathbf{T}_{\epsilon}+f-y_0\right\}_{t\in[0,1]}$ is a homotopy of type $(\mathbf{S})_+^*$. By the conclusion in (i), for $0<\varepsilon$, $\delta<\varepsilon_0$, $t\in[0,1]$, $0\tilde{\epsilon}[t(\mathbf{T}_{\delta}+f-y_0)+(1-t)(\mathbf{T}_{\epsilon}+f-y_0)](\partial\Omega)$. From Theorem 6 in the paper [1], we have

$$\deg (T_{\varepsilon} + f - y_0, \Omega, 0) = \deg (T_{\delta} + f - y_0, \Omega, 0)$$
i.e.,
$$\deg (T_{\varepsilon} + f, \Omega, y_0) = \deg (T_{\delta} + f, \Omega, 0).$$
So
$$\deg (T_{\varepsilon} + f, \Omega, y_0) \text{ is independent of } \varepsilon \text{ in } (0, \varepsilon_0). \text{ Q.E.D.}$$

Definition 2. Let $T: X \to 2^{X^*}$ be a maximal monotone mapping with $0 \in T(0)$, $G \subset X$ a bounded open set, and $f: \overline{\Omega} \to X^*$ a finitely continuous and weakly-demicontinuous quasibounded mapping of type $(S)_+^*$, $T_{\epsilon} = (T^{-1} + \epsilon J^{-1})^{-1}$, $y_0 \in (T + f)(\partial \Omega)$. we define

$$\deg (\mathbf{T} + f, \Omega, y_0) = \lim_{\varepsilon \to 0} \deg (\mathbf{T}_{\varepsilon} + f, \Omega, y_0).$$

Remark 1. We have constructed the topological degree for the sum T + f by using Yosida approximation. Because we demand that f is quasibounded, the degree theory for the sum T + f can not include the topological degree constructed for the mappings of type $(S)^*$ in the paper [1].

In the following, we shall give the some properties on the topological degree of mappings of type T+f.

Theorem 2 (Solvability). Let $T: X \to 2^{X^*}$ be a maximal monotone mapping with $0 \in T(0)$, $\Omega \subset X$ a bounded open set, and $f: \overline{\Omega} \to X^*$ a finitely continuous and weakly-demicontinuous quasibounded mapping of type $(S)^*_+$. If deg $(T + f, \Omega, y_0) \neq 0$, then $y_0 \in (T + f)(\Omega)$.

Proof. By Definition 2, there exists $\varepsilon_0 > 0$ such that deg $(T_{\epsilon} + f, \Omega, y_0) \neq 0$ $(\varepsilon \in (0, \varepsilon_0))$. Let $\varepsilon_n \to 0$, by Theorem 4 in the paper [1], there exists $\{u_n\} \subset \Omega$ such that $u_n \to u$ and $T\varepsilon_n(u_n) + f(u_n) = y_0$. Because $(T\varepsilon_n(u_n), u_n) > 0$ and f is quasibounded, we have a subsequence $\{f(u_n)\}$ of $\{f(u_n)\}$ such that $f(u_n \to g$. Thus, $T\varepsilon_n(u_n) \to g$.

 $w = y_0 - g$. Since

 $\overline{\lim} \left(\operatorname{T}_{\varepsilon_n}(u_n), u_n - u \right) = \overline{\lim} \left(y_0 - f(u_n), u_n - u \right) = -\underline{\lim} \left(f(u_n), u_n - u \right) \leq 0,$ it follows $\overline{\lim} \left(\operatorname{T}_{\varepsilon_{n_k}}(u_{n_k}), u_{n_k} - u \right) \leq \overline{\lim} \left(\operatorname{T}_{\varepsilon_n}(u_n), u_n - u \right) \leq 0.$ By Lemma 1, $w \in T(u)$, $\lim \left(\operatorname{T}_{\varepsilon_{n_k}}(u_{n_k}), u_{n_k} - u \right) = 0.$ So $\lim \left(f(u_{n_k}), u_{n_k} - u \right) = 0.$ it follows $u_{n_k} \to u \in \overline{\Omega}$ and $f(u_{n_k}) \to f(u)$. Hence, $y_0 = f(u) + w \in (T + f)(\Omega) \subset (T + f)(\overline{\Omega})$. By the condition $y_0 \in (T + f)(\partial \Omega)$, we have $y_0 \in (T + f)(\Omega)$. Q. E. D.

In order to construct the homotopy invariance, we make the following preparation.

Definition 3. Let $\{f_t\}_{t\in[0,1]}$ be a family of the mappings from X to X^* . $\{f_t\}_{t\in[0,1]}$ is said to be unifor quasibounded, if for each M>0, there exists a C>0 such that for arbitrary $t\in[0,1]$, when $x\in D$ (f_t) and $(f_t(x),x)\leqslant M\|x\|$, $\|x\|\leqslant M$, we have $\|f_t(x)\|\leqslant C$.

Proposition 1. Let $f: X \to X^*$ be a quasibounded mapping. Then $\{tf + (1-t)J\}_{t \in [0,1]}$ is a family of the uniform quasibounded mappings.

Proof. Let M>0. Because f is quasibounded, there exists a $C_1>0$ such that for $x\in D(f)$, $(f(x),x)\leqslant M\|x\|$ and $\|x\|\leqslant M$, we have $\|f(x)\|\leqslant C_1$. Let $C=\max\{M,C_1\}$. For $t\in (0,1]$, $x\in D(f)$ and $(tf(x)+(1-t)Jx,x)\leqslant tM\|x\|$, we have $(f(x),x)\leqslant M\|x\|$. Hence, $\|f(x)\|\leqslant C_1\leqslant C$. By $\|Jx\|=\|x\|\leqslant M\leqslant C$, we obtain $\|tf(x)+(1-t)Jx\|\leqslant C$. For t=0, $\|tf(x)+(1-t)Jx\|=\|Jx\|\leqslant C$. So $\{tf+(1-t)J\}_{t\in [0,1]}$ is uniform quasibonded. Q, E.D.

Lamma 3. Let $\{T_t\}_{t\in[0,1]}$ be a pseudomonotone homotopy of maximal monotone mappings from X to 2^{X^*} , and $f:X\to X^*$ a bounded maximal monotone mapping with D(f)=X. Then $\{T_t+f\}_{t\in[0,1]}$ is a pseudomonotone homotopy.

Proof. Let $\{t_n\}\subset [0,1]$, $t_n\to t$, $[u_n,\omega_n]\in G(Tt_n)$, $u_n\to u$, $\omega_n+f(u_n)\to g$, and $\overline{\lim}(\omega_n+f(u_n),u_n)\leqslant (g,u)$. Because f is bounded, there exists a subsequence $\{f(u_{n_k})\}$ of $\{f(u_n)\}$ such that $f(u_{n_k})\to g_1$. Thus, $\omega_{n_k}\to g-g_1=\omega$. By $\underline{\lim}(f(u_{n_k}),u_{n_k}\to u)\geqslant 0$, we have $\overline{\lim}(\omega_{n_k},u_{n_k})\leqslant (\omega,u)$. From Definition, $\omega\in T_{t(u)}$, $\overline{\lim}(\omega_{n_k},u_{n_k}\to u)=0$. So $\overline{\lim}(f(u_{n_k}),u_{n_k}\to u)\leqslant 0$. Since f is maximal monotone mapping, we have $g_1=f(u)$ and $\lim(f(u_{n_k}),u_{n_k}\to u)=0$. Thus, $g=f(u)+\omega\in (Tt+f)$ (u), $\lim(\omega_{n_k}+f(u_{n_k}),u_{n_k})=(g,u)$. It follows $\lim(\Omega_n+f(u_n),u_n)=(g,u)$. By Definition 1, we know that the conclusion is true. Q, E, D.

Lemma 4. Let $\{T_t\}_{t\in[0,1]}$ be a family of the uniform bounded maximal monotone mappings from X to X* with $0 \in T_t(0)$ and $D(T_t) = X$ for all $t \in [0,1]$, and $\{T_t\}_{t\in[0,1]}$ a pseudomonotone homotopy, $Q \subset X$ a buunded open set, $\{f_t\}_{t\in[0,1]}$ a homotopy of class $(S)^*$ from \overline{Q} to X^* . Then $\{T_t + f_t\}_{t\in[0,1]}$ is an a homotopy of class $(S)^*$ from \overline{Q} to X^* . class

Proof. Similar to the proof of Lemma 3, we omit it. Q. E. D. Theorem 3 (Homotopy invariance). Let $Q \in X$ be a bounded open set.

 $\{f_t\}_{t\in[0,1]}$ a family of uniform quasibounded and finitely continuus mappings, and $\{f_t\}_{t\in[0,1]}$ be a homotopy of class $(S)_+^*$ from $\overline{\Omega}$ to X^* , $\{T_t\}_{t\in[0,1]}$ a pseudomonotone homotopy of maximal monotone mappings from X to 2^{X^*} with $0\in T_t(0)$ and $0\in (T_t+f_t)$ $(\partial\Omega)$ for all $t\in[0,1]$. Then deg $(T_t+f_t,\Omega,0)$ is independent of $t\in[0,1]$.

Proof. (i) We prove that $\{T_{t,\epsilon} + f_t\}_{t \in [0,1]}$ is a homotopy of class $(S)^*_+$ from \overline{Q} to X^* for each $\epsilon > 0$.

By $\{T_{t}\}_{t\in[0,1]}$ is a pseudomonotone homotopy and Definition 1, we know that $\{T_{t}^{-1}\}_{\kappa\in[0,1]}$ is also pseudomonotone homotopy. From, Lemma 3, $\{T_{t}^{-1}+\varepsilon T^{-1}\}_{\kappa\in[0,1]}$ is a pseudomonotone homotopy. Thus, $\{T_{t,\varepsilon}\}_{t\in[0,1]}$ is also a pseudomonotone homotopy. Since $\{T_{t,\varepsilon}\}_{t\in[0,1]}$ is uniform bounded for each $\varepsilon>0$, we know that $\{T_{t,\varepsilon}+f_{t}\}_{\kappa\in[0,1]}$ is a homotopy of class $(S)_{+}^{\bullet}$ by Lamma 4.

(ii) We shall prove that there exists $\varepsilon_0 > 0$ such that $0 \in (T_{t,\epsilon} + f_t)(\partial \Omega)$ for each $\varepsilon \in (0,\varepsilon_0)$ and deg $(T_{t,\epsilon} + f_t, \Omega, 0)$ is independent of $t \in [0,1]$ and $\varepsilon \in (0,\varepsilon_0]$.

Suppose that the conclusion is false. By Lemma 2 and Theorem 4 in the paper [1], there exist $\{t_n\}\subset [0,1]$, $\varepsilon_n>0$, $\delta_n>0$, $t_n\to t$, $\delta_n\to 0$, $\varepsilon_n\to 0$, $u_n\in\partial\Omega$ and $\{s_n\}\subset [0,1]$ such that $(1-s_n)T_{t_n}$, $\varepsilon(u_n)+s_nT_{t_n}$, $\delta_n(u_n)+f_t(u_n)=0$ $(n=1,2,\cdots)$.

Let $\Omega_n = -f_{t_n}(u_n)$. Since $0 \in T_{t,\varepsilon}(0)$ for $\varepsilon > 0$ and $t \in [0,1]$, we have $(f_{t_n}(u_n), u_n) \le 0$. By $\{f_t\}_{t \in [0,1]}$ is uniform quasibounded, we may assume $u_n \to u$ and $\omega_n \to \omega$. By Proposition 8 in the paper [1], $\overline{\lim}(\Omega_n, u_n - u) = -\underline{\lim}(f_{t_n}(u_n), u_n - u) \le 0$. From Lemma 1, we have $\Omega \in T_t(u)$ and $\lim (\Omega_n, u_n - u) = 0$. So $\lim (f_{t_n}(u_n), u_n - u) = 0$. Because $\{f_t\}_{t \in [0,1]}$ is a homotopy of class $(S)_+^*$, it follows $u_n \to u$ and $f_{t_n}(u_n) \to f_t(u)$. Thus, $u \in \partial \Omega$ and $-f_t(u) = \Omega \in T_t(u)$. i.e. $0 \in (T_t + f_t)(\partial \Omega)$. which contradicts $0 \in (T_t + f_t)(\partial \Omega)$.

Remark 2. Because the additivity of domain is similar to the paper [1], we do not discuss it here.

In the following, we consider the generalized topological degree for T + f when f is a mapping of type quasi- $(S)^{*}$.

Theorem 4. Let $\Omega \subset X$ be a bounded open set, $f: \overline{\Omega} \to X^*$ a finitely continuous and quasibounded mapping of type quasi- $(S)^*_+$, and $T: X \to 2^{X^*}$ a maximal monotone mapping with $0 \in T(0)$, $y_0 \in (\overline{T+f})(\partial \Omega)$. Then

- (i) There exists $\varepsilon_0 > 0$ such that $y_0 \bar{\epsilon} (T + f + \varepsilon J) (\partial \Omega)$ for $\varepsilon \epsilon (0, \varepsilon_0)$;
- (ii) deg $(T + f + \varepsilon J, \Omega, y_0)$ is independent of $\varepsilon \in (0, \varepsilon_0)$.

Proof. (i) Because Ω and J is bounded, there exists $\varepsilon_0 > 0$ such that $y_0 \in (T + f + \varepsilon J)$ ($\partial \Omega$) for $\varepsilon \in (0, \varepsilon_0)$. Thus, deg $(T + f + \varepsilon J, \Omega, y_0)$ is well-defined.

(ii) For
$$0 < \varepsilon < \varepsilon_0$$
, $0 < \delta < \varepsilon_0$ and $t \in [0,1]$, we obtain
$$t(\mathbf{T} + f + \varepsilon \mathbf{J}) + (1-t)(\mathbf{T} + f + \delta \mathbf{J}) = \mathbf{T} + f + (t\varepsilon + (1-t)\delta)\mathbf{J}.$$
 So
$$y_0 \overline{\epsilon} (t(\mathbf{T} + f + \varepsilon \mathbf{J}) + (1-t)(\mathbf{T} + f + \delta \mathbf{J})) (\partial \Omega).$$
 i.e.
$$0 \overline{\epsilon} (\mathbf{T} + (f - y_0) + (t\varepsilon + (1-t)\delta)\mathbf{J}) (\partial \Omega).$$

By Lamma 2 and Theorem 3, we have

$$deg(T + f + \varepsilon J - y_0, \Omega, 0) = deg(T + f + \delta J - y_0, \Omega, 0)$$
.

Hence, $\deg (\mathbf{T} + f + \varepsilon \mathbf{J}, \Omega, y_0) = \deg (\mathbf{T} + f + \delta \mathbf{J}, \Omega, y_0)$ Q. E. D.

Definition 4. Let $\Omega \subset X$ be a bounded open set, $f: \overline{\Omega} \to X^*$ a finitely continuous and quasibounded mapping of type quasi- $(S)^*$, and $T: X \to 2^{X^*}$ a maximal monotone mapping with $0 \in T(0)$, $y_0 \overline{\epsilon(T+f)(\partial \Omega)}(\partial \Omega)$. We define

$$\deg (\mathbf{T} + f, \Omega, y_0) = \lim_{\varepsilon \to 0} \deg (\mathbf{T} + f + \varepsilon \mathbf{J}, \Omega, y_0).$$

In the following, we give two properties for the degree function. The proofs are omitted.

Theorem 5 (Solvability) Let $\Omega \subset X$ be a bounded open set, $f: \overline{\Omega} \to X^*$ a finitely continuous and quasibounded mapping of type quasi- $(S)^*_+$, and $T: X \to 2^{X^*}$ a maximal monotone mapping with $0 \in T(0)$. If $\deg(T + f, \Omega, y_0) \neq 0$, then $y_0 \in \overline{(T + f)(\Omega)}$.

Theorem 6 (Homotopy invariance) Let $\{T_t\}_{t\in[0,1]}$ be a pseudomonotone homotopy of maximal monotone mappings from X to 2^{X^*} with $0\in T_t(0)$ $(t\in[0,1])$, $\Omega\subset X$ a bounded open set, and $\{f_t\}_{t\in[0,1]}$ a homotopy of class quasi- $(S)_+^*$ from $\overline{\Omega}$ to X^* and uniform quasibouded, there exists r>0 such that $B(0,r)\cap (T_t+f_t)(\partial\Omega)=\phi$ $(t\in[0,1])$ Then $\deg(T_t+f_t,\Omega,0)$ is independent of $t\in[0,1]$.

Remark 3. The topological degree for T+f had been constructed in the paper [2] and [3] when f is a bounded and demicontinuous pseudomonotone mapping. In this section, we extend f to a finitely continuous and quasibounded mapping of type quasi- $(S)^*_+$. Because zero mapping is of type quasi- $(S)^*_+$. the topological degree for T+f is the topological degree for T when f=0, where T is a maximal monotone mapping. The topological degree for T had been constructed in the paper [4] when T is a separable Hilbert space and int T in T in T in T in T in T in T is a separable Hilbert space and T in T in

§ 2 Solvability and Surjectivity

In this section, we shall prove some results for solvability and surjectivity by using the degree theory constructed in the paper [1] and §1.

Definition 5. Let $f: X \to X^*$. f is called to satisfy condition (Q), if for $\{x_n\}$ $\subset D(f)$, $x_n \to x_0 \in D(f)$ and $f(x_n) \to y_0$, we have $f(x_0) = y_0$.

Lemma 5. Let $\Omega \subset X$ be a bounded convex set, and $f: \overline{\Omega} \to X^*$ satisfy condition (Q). Then $\overline{f(\Omega)} \subset f(\overline{\Omega})$.

Proof. Let $y_0 \in \overline{f(\Omega)}$. Since Ω is a bounded convex set, we have $\{x_n\} \subset \Omega$ such that $x_n \to x \in \overline{\Omega}$, $f(x_n) \to y_0$. By condition (Q), $y_0 = f(x)$. Hence $y_0 \in f(\overline{\Omega})$.

Q.E.D.

Theorem 7. Let $\Omega \subset X$ a bounded open convex set, and $f: \overline{\Omega} \to X^*$ a finitely continuous mapping of type quasi- $(S)^*_+$. For $g \in X^*$, there exist r > 0 and c > ||g|| such that $B(0,r) \subset \overline{\Omega}$. $(f(x),x) \geqslant c ||x|| (x \in \partial B(0,r))$. Then

- (i) $g \in \overline{f(\mathbf{B}(0,r))}$;
- (ii) When f satisfies condition (Q), the equation f(x) = g has at least a solution in B(0,r).

Proof. Let $f_i(x) = t(f(x) - g) + (1 - t)\mathbf{J}x$, $t \in [0,1]$, $x \in \overline{\mathbf{B}(0,r)}$. By Theorem 9 in the paper [1], $\{f_i\}_{i \in [0,1]}$ is a homotopy of type quasi- $(\mathbf{S})^*$. For $x \in \partial \mathbf{B}(0,r)$.

$$(f_t(x), x) = t(f(x) - g, x) + (1 - t)(Jx, x) \ge \min\{-\|g\|, r\} \|x\|.$$

So B $(0,S) \cap f_t(\partial B(0,r)) = \phi$, $t \in [0,1]$, $S = \frac{1}{2} \min\{c' - ||g||, r\} > 0$, By Theorem 10 in the paper [1].

$$deg(f-g, B(0,r), 0) = deg(J, B(0,r), 0) = 1.$$

Thus, $\deg(f, \mathbf{B}(0, r), g) \neq 0$. By Theorem 8 in the paper [1], we have $g \in \overline{f(\mathbf{B}(0, r))}$.

If f satisfies condition (Q). By Lemma 5 and $g \in f(\partial B(0,r))$, we have $g \in f(B(0,r))$. i.e. f(x) = g has at least a solution in B(0,r).

Corollary 1. Let $\Omega \subset X$ be a bounded open convex set, and $f: \overline{\Omega} \to X^*$ a finitely continuous mapping. For $g \in X^*$, there exist r > 0 and $\hat{c} > \|g\|$ such that $\mathbf{B}(0, r) \subset \overline{\Omega}$, $(f(x), x) \geqslant c \|x\| (x \in \partial \mathbf{B}(0, r))$. If f satisfies one of the following conditions:

- (i) f is a quasibounded generalized pseudomonotone mapping,
- (ii) f is a demicontinuous pseudomonotone mapping, then the equation f(x) = g has at least a solution in B(0,r).

Proof: By Theorem 2 in the paper [1], we have that f is a mapping of type quasi- $(S)^*$. We can prove easily that f satisfies the condition (Q). From Theorem 7, we know that the conclusion is true. Q, E, D.

We can obtain the following result from Theorem 7.

Theorem 8 Let $f: X \rightarrow X^*$ be a finitely continuous and coercive mapping of type quasi- $(S)^*$, D(f) = X. Then

- (i) $\overline{\mathbf{R}(f)} = \mathbf{X}^*$.
- (ii) When f satisfies the condition (Q), $R(f) = X^*$.

Corollary 2. Let $f: X \to X^*$ be a demicontinuous and coercive mapping of type (P) with D(f) = X. Then $\overline{R(f)} = X^*$.

Corollary 3. Let $f: X \rightarrow X^*$ be a coercive mapping with D(f) = X. If f satisfies one of the following conditions:

- (i) f is a finitely continuous and quasibounded generalized pseudomonotone mapping;
 - (ii) f is a demicontinuous pseudomonotone mapping, Then $R(f) = X^*$.

In the following, we shall consider the surjectivity for the sum of two mappings.

Definition 6. Let $f: X \to X^*$. f is called to satisfy condition (G), if for $\{x_n\}$ $\subset D(f)$, $x_n \to x \in D(f)$, $f(x_n) \to g \in X^*$ and $\lim_{x \to g} (f(x_n), x_n - x) = 0$, we have f(x) = g.

By Definition 5 and Definition 6, we know that the condition (Q) is weaker than the condition (G).

Lemma 6. Let $T: X \to 2^{X^*}$ be a maximal monotone mapping with $0 \in D(T)$, $\Omega \subset X$ a bounded convex set, and $f: \overline{\Omega} \to X^*$ a quasibounded mapping of type quasi- $(S)^*$ with the condition (G). Then $\overline{(T+f)(\Omega)} \subset (T+f)(\overline{\Omega})$.

Proof. Let $y_0 \in \overline{(T+f)(Q)}$. Since Q is a bounded convex set, there exists $\{x_n\} \subset Q$ such that $x_n \to x \in Q$ and $g_n + f(x_n) \to y_0$, $y_n \in T(x_n)$. Thus, $\lim_{n \to \infty} (g_n + f(x_n), x_n - x) = 0$ and there exists M > 0 such that $(g_n + f(x_n), x_n) \leq M \|x_n\|$ $(n = 1, 2, \cdots)$. Let $g_0 \in T(0)$, then $(f(x_n), x_n) \leq M \|x_n\| + \|g_0\| \|x_n\| = (M + \|g_0\|) \|x_n\|$ $(n = 1, 2, \cdots)$. By Theorem 1 in the paper [1], $\lim_{n \to \infty} (f(x_n), x_n - x) > 0$. Since $\lim_{n \to \infty} (g_n, x_n - x) > 0$, we have $\lim_{n \to \infty} (f(x_n), x_n - x) = 0$ and $\lim_{n \to \infty} (g_n, x_n - x) = 0$. Because f is quasibounded, there exists a subsequence $\{f(x_{n_k})\}$ of $\{f(x_n)\}$ such that $f(x_{n_k}) \to g \in X^*$. By the condition (G), we have g = f(x). Hence, $g_{n_k} \to y_0 - f(x)$. it follows $y_0 - f(x) \in Tx$. i.e. $y_0 \in (T+f)(x) \subset (T+f)(\overline{Q})$. Q. E. D.

Theorem 9. Let $T: X \to 2^{X^*}$ be a maximal monotone mapping with $0 \in D(T)$, $\Omega \subset X$ a bounded open convex set, and $f: \overline{\Omega} \to X^*$ a finitely continuous and quasibounded mapping of type quasi- $(S)^*_+$ with the condition (G). For $g \in X^*$ and $g_0 \in T(0)$. If there exist r > 0 and $c > \|g\| + \|g_0\|$ such that $B(0,r) \subset \overline{\Omega}$. $(f(x),x) > c \|x\|$ $(x \in \partial B(0,r))$. Then the equation $g \in (T+f)(x)$ has at least a solution in B(0,r).

Proof. We write $T_1 = T - y_0$, then T_1 is a maximal monotone mapping with $0 \in T_1(0)$. Let $\overline{T}_{\lambda} = (T_1^{-1} + \lambda J^{-1})^{-1}$,

$$f_t(x) = t(\overline{T}_{\lambda}(x) + f(x) - g + g_0 + \varepsilon Jx) + (1 - t)Jx, x \in \overline{B(0,r)}, \varepsilon > 0.$$

By Theorem 5 in the paper [1], $\{f_i\}_{i \in [0,1]}$ is a homotopy of class $(S)^*_+$ for each $\varepsilon > 0$. For $x \in \partial B(0,r)$,

$$(f_{t}(x), x) = t(\overline{T}_{t}(x) + f(x) - g + g_{0} + \varepsilon Jx, x) + (1 - t) (Jx, x)$$

$$\ge t(f(x) - g + g_{0}, x) + (1 - t) (Jx, x)$$

$$\ge \min\{c - \|g\| - \|g_{0}\|, r\} \|x\|.$$

So $B(0,s) \cap f_r(\partial B(0,r)) = \phi$, where $S = \frac{1}{2} \min \{c - \|g\| - \|g_0\|, r\}$. By Theorem 6 in the paper [1].

$$\deg (\overline{\mathbf{T}}_{\lambda} + f + \varepsilon \mathbf{J} - g + g_0, \ \mathbf{B}(0,r), 0) = \deg (\mathbf{T}, \mathbf{B}(0,r), 0) = 1.$$
i.e.
$$\deg (\overline{\mathbf{T}}_{\lambda} + f + \varepsilon \mathbf{J}, \mathbf{B}(0,r), g - g_0) = 1, \quad \lambda > 0, \quad \varepsilon > 0.$$
Hence
$$\deg (\mathbf{T}_1 + f + \varepsilon \mathbf{J}, \mathbf{B}(0,r), g - g_0) = \lim_{\lambda \to 0} \deg (\overline{\mathbf{T}}_{\lambda} + f + \varepsilon \mathbf{J}, \mathbf{B}(0,r), g - g_0) = 1.$$

$$\deg (T_1 + f, \mathbf{B}(0, r), g - g_0) = \lim_{\epsilon \to 0} \deg (T_1 + f + \epsilon \mathbf{J}, \mathbf{B}(0, r), g - g_0) = 1.$$

By Theorem 5, $g - g_0 \in (T + f) \setminus (B(0,r))$. From Lemma 6 and $g - g_0 \in (T_1 + f) \setminus (\partial B(0,r))$. we have $g - g_0 \epsilon (T_1 + f) (\mathbf{B}(0, r))$. Hence, $g \epsilon (T + f) (\mathbf{B}(0, r))$.

Corollary 4. Let $T: X \to 2^{X^{\bullet}}$ be a maximal monotone mapping with $0 \in D(T)$, $\Omega \subset X$ a bounded oren convex set, and $f: \overline{\Omega} \to X^*$ a finitely continuous and quasibounded generalized pseudomonotone mapping. Fro $g \in X^*$ and $g_0 \in T(0)$, there exist r>0 and $c>\|g\|+\|g_0\|$ such that $B(0,r)\subset\overline{\Omega}$, $(f(x),x)>c\|x\|$ $(x\in\partial B(0,r))$. Then the equation $g \in (T + f)(x)$ has at least a solution in B(0,r).

By Theorem 9, we can obtain the following result.

Theorem 10. Let $T:X\to 2^{X^*}$ be a maximal monotone mapping with $0\in D(T)$, and $f:X\to X^*$ a finitely continuous and quasibounded mapping of type quasi-(S)* with D(f) = X, f satisfy the condition (G) and be coercive. Then $R(T + f) = X^*$.

Corollary 5. Let $T:X\to 2^{X^*}$ be a maximal monotone mapping with $0\in D(T)$, and $f:X \to X^*$ a finitely continuous and quasibounded generalized pseudomonotone mapping with D(f) = X. If f is coercive, then $R(T + f) = X^*$.

Remark 4. The other proofs of Corollary 2, Corollary 3 and Corollary 5 can be found in the paper [8].

References

- [1] Zhao Yichun and Yang Guanghong (赵义纯、杨光红), The generalized topological degree for nonlinear mappings of monotone type Chin, Ann. fo Math., 10 A(1)(1989). 67-71.
- [2] Browder, F.E., Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (New Series)9(1983), 1-39.
- [3] Browder, F.E., Degree of mapping for nonlinear mappings of monotone type: Densely defined mapping, Proc. Natl. Acad. Sci. USA 80(1983), 2405-2407.
- [4] Li Shujie and Feng Dexing (李树杰, 冯德兴). Topological degree for multiple valued maximal monotone mappings in the Hilbert space, Acta Math., Sinica, 25, 5 (1982), 533-541.
- [5] Zhao Yichun (赵义纯), On the topological degree for the sum of maximal monotonc operators and generalized pseudomonotone operators, Chin. Ann. of Math., 4B, 2(1983), 241-253.
- [6] Feng Dexing and Li Shujie (冯德兴, 李树杰). Topological degree of monotone mappings, Acta Math., Sinica, 24, 1(1981), 106-115.
- [7] Browder, F.E. and Hess. P., Nonliner mappings of monotone type in Banach spaces, J. Funct. Anal., 11(1972), 251-294.
- [8] Pascali D. and Sburlan S., Nonlinear mappings of monotone type (1978), Editura Academiei Bucuresti Romania.