Journal of Mathematical Research and Exposition Vol.9, No.2, May, 1989.

Maximal Quotient Rings of Endomorphisms of Quasigenerators*

Zhu Sheng-lin (朱胜林)

(Fudan University)

O.Preliminaries. Let R be an associative ring with identity, and let Mod-R denote the category of all unital right R-modules. A set of right ideal \mathcal{F} of R is called a Gabriel topology on R if \mathcal{F} satisfies

T1. If $I \in \mathcal{F}$ and $I \subseteq J$, then $J \in \mathcal{F}$.

T2. If I and J belong to \mathscr{F} , then $I \cap J \in \mathscr{F}$.

T3. If \mathcal{F} and $r \in \mathbb{R}$, then $(I:r) = \{x \in \mathbb{R} : rx \in I\} \in \mathcal{F}$.

T4. If I is a right ideal of R and there exists $J \in \mathcal{F}$ such that $(I:r) \in \mathcal{F}$ for every $r \in J$, then $I \in \mathcal{F}$.

The set of all essential right ideals of R forms a Gabriel topology, called the Goldie topology on R. If E is a injective right R-module, then the set $\mathscr{F}_E^0 = \{I : I : I \text{ is right ideal of R, } \operatorname{Hom}_R(R/I, E) = 0\}$ is a Gabriel topology on R, and it is called the Gabriel topology on R cogenerated by E. Specially when E = E(R), the injective hull of R, $\mathscr{D} = \mathscr{F}_E^0$ is called the dense topology on R.

Associated with each Gabriel topology \mathscr{F} on \mathbb{R} , there exists a left exact tor sion radical t(M) of M od $-\mathbb{R}$ such that $t(M) = \{x \in M : Ann_{\mathbb{R}}(x) \in \mathscr{F}\}$, $M \in M$ od $-\mathbb{R}$. For $M \in M$ od $-\mathbb{R}$, the quotient module $M_{\mathscr{F}}$ of M with respect to \mathscr{F} is defined as $M_{\mathscr{F}} = \lim_{\mathbb{R}} Hom_{\mathbb{R}}(I, M/t(M))$, $I \in \mathscr{F}$.

For other terminology about localization, the reader will refer to [1].

1. Let \mathscr{A} be a Gabriel topology on R and let t be the associated torsion radical. For each right R-module M_R , the quotient module $M_{\mathscr{F}}$ of M can be defined as

$$\mathbf{M}_{\mathbf{f}} = \underline{\lim}_{\mathbf{I} \in \mathbf{f}} \mathrm{Hom}_{\mathbf{R}}(\mathbf{I}, \mathbf{M}/t(\mathbf{M}))$$
.

In a similar way, if $P \in \text{Mod} - \mathbb{R}$ and $\mathscr{G}(P)$ is the set of all \mathscr{G} -dense submodules of P, we can get an additive abelian group

$$P_{\mathcal{J}} \operatorname{Hom}_{R}(P, M) = \underset{P' \in \mathcal{J}(P)}{\underline{\lim}} \operatorname{Hom}_{R}(P', M/t(M)).$$

Define a pairing $P_{\mathcal{F}}$ Hom_R $(P, M) \times P_{\mathcal{F}}$ Hom_R $(P, P) \rightarrow P_{\mathcal{F}}$ Hom_R(P, M) as follows: suppose $x \in P_{\mathcal{F}}$ Hom_R(P, M) and $a \in P_{\mathcal{F}}$ Hom_R(P, P) are represented by $\xi : P' \rightarrow M/T$ (M) and

^{*} Received Mar. 16, 1987.

 $a: P'' \rightarrow P/t(P); \quad \xi \text{ induced a homomorphism } \overline{\xi}: P' + t(P)/t(P) \cong P'/t(P') \rightarrow M/t(M);$ we then define $xa \in P_{\underline{f}} \operatorname{Hom}_{\mathbb{R}}(P, M)$ to be represented by the composed homomorphisms.

$$a^{-1}(P'+t(P)/t(P)) \xrightarrow{\alpha} P'+t(P)/t(P) \xrightarrow{\overline{\xi}} M/t(M)$$

it is easy to see that xa is well defined; and the pairing is biadditive. When P = M, this makes $P_{\mathscr{F}} \operatorname{Hom}_{\mathbb{R}}(P, P)$ a ring (briefly, we denote it by $P_{\mathscr{F}} \operatorname{End}_{\mathbb{R}}P$), and in the general case it makes $P_{\mathscr{F}} \operatorname{Hom}_{\mathbb{R}}(P, M)$ a right $P_{\mathscr{F}} \operatorname{End}_{\mathbb{R}}P$ -module. We call the elements in $P_{\mathscr{F}} \operatorname{Hom}_{\mathbb{R}}(P, M)$ ($P_{\mathscr{F}} \operatorname{End}_{\mathbb{R}}P$) partial homomorphisms (partial endo morphisms) from P to M (of P) with respect to \mathscr{F} .

Theorem 1.1. Let P_R , M_R be right R-modules, and let \mathscr{F} be a Gabriel topology on R. Then there exists a additive group homomorphism

$$\Phi_{P,M}: P_{\mathcal{F}} \operatorname{Hom}_{R}(P, M) \rightarrow \operatorname{Hom}_{R_{\mathcal{F}}}(P_{\mathcal{F}}, M_{\mathcal{F}})$$

such that

- (i) $\Phi_{P,P}$ is a ring isomorphism.
- (ii) The right $\operatorname{End}_{R_{\mathscr{J}}}P_{\mathscr{J}}$ -module $\operatorname{Hom}_{R_{\mathscr{J}}}(P_{\mathscr{J}}, M_{\mathscr{J}})$ can be made into a right $P_{\mathscr{J}}$ $\operatorname{End}_{R}P$ -module by defining $xa = x\Phi_{P,P}(a)$, where $x \in \operatorname{Hom}_{R_{\mathscr{J}}}(P_{\mathscr{J}}, M_{\mathscr{J}})$, $a \in P_{\mathscr{J}}\operatorname{End}_{R}P$. Then $\Phi_{P,M}$ is a $P_{\mathscr{J}}\operatorname{End}_{R}P$ -isomorphism.

Before the proof of the theorem we need the following lemmas.

Lemma 1.2. Let $P' \in \mathcal{F}(P)$ and $f \in H \stackrel{\circ}{\text{om}}_{\mathbb{R}}(P, M)$. If $N \in \mathcal{F}(M)$, then $f^{-1}(N) \in \mathcal{F}(P)$.

Lemma 1.3. Let M be a \mathscr{J} -torsionfree R-module and $f \in \operatorname{Hom}_{\mathbb{R}}(P, M)$. If $f \in \mathscr{F}(P)$ then f = 0.

Proof. Let $x \in P$, then there exists an $I \in \mathcal{F}$ such that $xI \subseteq \ker f$; f(x)I = f(xI) = 0. Hence $f(x) \in f(M) = 0$.

Let $x \in P$, then there exists an R-homomorphism $x_L : \mathbb{R} \to P/t(P)$, setting $a \in \mathbb{R}$ to xa + t(P). x_L representes an element in $P_{\mathscr{F}}$, which will be denoted by \overline{x} .

Lemma 1.4. Let $\{f_j\}_{j\in J}$ be an arbitrary set of representatives of $P_{\mathcal{F}} = \underline{\lim}$ Hom_R(I, P/t(P)). Then

$$\sum_{i \in I} \operatorname{Im} f_{f} \mathscr{F}(P/t(P)).$$

Proof. Assume that P is \mathscr{J} -torsionfree. Let $x \in P$, since $\{f_j\}_{j \in J}$ be a set of representatives of $P_{\mathscr{J}}$, the element \overline{x} can be represented by $f_{j(x)}$, for some $j(x) \in J$; that is, x_L and $f_{j(x)}$ coincide on some \mathscr{J} -dense right ideal I_x contained in the domain of $f_{j(x)}$, $xI_x \subseteq Im f_{j(x)}$. This shows that $\sum_{x \in P} xI_x \subseteq \sum_{j \in J} Im f_j$, with $\sum_{x \in P} xI_x \in \mathscr{J}(P)$.

The proof of Theorem |.|. Without loss of generality, we assume that M is \mathscr{J} -torsionfree. The mapping $\Phi_{P,M}$ can be defined as follows: Assume $x \in P_{\mathscr{J}}$ Hom_R(P, M) be represented by $\xi : P' \to M$, with $P' \in \mathscr{F}(P)$; then ξ induces $\overline{\xi} : P' + t(P)/t(P) \to M$. Define $\Phi_{P,M}(x) \in \operatorname{Hom}_{R_{\mathscr{J}}}(P_{\mathscr{J}}, M_{\mathscr{J}})$, which sets $a \in P_{\mathscr{J}}$, represented by

 $f: I \rightarrow P/t(P)$; to the element of $M_{\mathscr{I}}$ represented by the composed homomorphisms

$$f^{-1}(P'+t(P)/t(P)) \xrightarrow{f} P'+t(P)/t(P) \xrightarrow{\overline{\xi}} M;$$

it is easy to check that $\Phi_{P,M}$ is well defined, i.e. independent of the choices of representing homomorphisms ξ and f; and $\Phi_{P,M}$ is acturally an additive group homomorphism. If we make $\operatorname{Hom}_{R_{\mathscr{A}}}(P_{\mathscr{F}}, M_{\mathscr{F}})$ a right $P_{\mathscr{F}}\operatorname{End}_{R}P\operatorname{-module}$ as done in Theorem 1.1, then $\Phi_{P,M}$ is also an $R_F \operatorname{End}_R P$ -homomorphism. We claim that $\Phi_{P,M}$ has the properties stated in Theorem 1.1. To see this, it suffices to define a mapping

$$\Psi_{P,M}$$
: $\operatorname{Hom}_{R_{\mathscr{J}}}(P_{\mathscr{J}}, M_{\mathscr{J}}) \rightarrow P_{\mathscr{J}} \operatorname{Hom}_{R}(P, M)$

 $\Psi_{P,M} \cdot \Phi_{P,M} = \operatorname{Id}_{P_{\mathscr{F}} \operatorname{Hom}_{R}(P, M)}, \text{ and } \Phi_{P,M} \cdot \Psi_{P,M} = \operatorname{Id}_{\operatorname{Hom}_{R_{\mathscr{F}}}(P_{\mathscr{F}}, M_{\mathscr{F}})}.$ such that

Assume $x \in \operatorname{Hom}_{\mathbb{R}_{\mathscr{F}}}(P_{\mathscr{F}}, M_{\mathscr{F}})$. For each $y \in P_{\mathscr{F}}$, let y and $x(y) \in M_{\mathscr{F}}$ be represented respectively by f_y and g_y . Without loss of generality we can assume that the domains of f_y and g_y coincide. Since $\{f_y\}_{y \in P_x}$ is a set of representatives of P_y ; by Lemma 1.4 we have

$$\sum_{y \in P_{\mathfrak{F}}} \operatorname{Im} f_{y} = P'/t(P) \in \mathscr{F} (P/t(P)).$$

Let x' be the R-homomorphisn

$$x': \sum_{y \in P_f} \operatorname{Im} f_y \rightarrow M,$$

 $\sum_{y \in P} f_y(x_y) \rightarrow \sum_{y \in P} g_y(x_y), \quad x_y = 0 \text{ for but a finite set .}$

x' is well defined. Since, if $\sum_{y \in P_x} f_y(x_y) = 0$ then $\sum_{y \in P_x} y \cdot \overline{x}_y = 0$ in P_y , with $\overline{x}_y \in R_y$;

hence $\sum_{y \in P} x(y) \cdot \overline{x}_y = 0$; and $g = \sum_{y \in P} y(x_y) \cdot R \rightarrow M$ is a representative of $\sum_{y \in P} x(y) \cdot \overline{x}_y$,

thus there exists some Ie \mathcal{F} such that $g|_{I} = 0$. By Lemma 1.3 we have g = 0. Hence $\sum_{y \in P} g_{y(X_y)} = g(1) = 0.\text{Define } \Psi_{P,M}(x) \text{ in } P_{\mathcal{F}} \text{Hom}_{R}(P, M) \text{ to be the element represented}$

by the composed homomorphism
$$P' \xrightarrow{\pi} P'/t(P) = \sum_{y \in P_p} {\rm Im} \ f_y \xrightarrow{X'} {\rm M} \ .$$

where π is the canonical epimorphism. $\Psi_{P,M}(x)$ is independent of the choices of representing homomorphism of $P_{\mathcal{F}}$, It is routine to check that $\Psi_{P,M} \cdot \Phi_{P,M}$ = $\operatorname{Id}_{P_{\alpha} \operatorname{Hom}_{R}}(P, M)$ and $\Phi_{P, M} \cdot \Psi_{P, M} = \operatorname{Id}_{\operatorname{Hom}_{R_{\alpha}}}(P_{\alpha}, M_{\alpha})$.

Proposition 1.5 Let R be a ring and let g denote the Goldie topology on R **R.** If M_R is a nonzero nonsingular right R-module, then $P_{\mathfrak{G}}$ Hom_R(M, R) $\neq 0$.

Proof. Let $0 \neq m \in M$, then $r(m) \notin \mathcal{E}$, thus there exists an nonzero right ideal I of R such that $r(m) \cap I = 0$. I is isomorphic to mI under the homomorpzism $a \rightarrow$ ma, and the nonsingularity of M gives that $I \cap \overline{Z}(R) = \overline{Z}(I) = 0$, where \overline{Z} is the Goldie torsion radical of Mod-R. By Zorn's Lemma there exists a submodule N

of M such that $mI \cap N = 0$ and $mI \oplus N \leq_e M$. Define $x \in P_{\mathfrak{G}} \operatorname{Hom}_{\mathbb{R}}(M, \mathbb{R})$ to be represented by the composed homomorphism

$$mI + N \rightarrow mI \rightarrow I \rightarrow R/\overline{Z}(R)$$
,

then x is a nonzero element in P_{G} Hom_R(M, R).

Corollary 1.6. $R_{\mathfrak{E}}$ is a cogenerator of the Grothendieck category $\operatorname{Mod}_{-}(R,\mathfrak{E})$.

2. In this section the right maximal quotient ring of $\operatorname{End}_R P$, for a quasigenerator P_R , is discussed.

Definition 2.1. Let \mathscr{F} be a Gabriel topology on R, and let P_R , M_R be right R modules. We say that

P \mathscr{G} -generates M if and only if Trace ${}_{M}P \in \mathscr{F}(M)$.

P is a \mathscr{J}_{-} generator if and only if P \mathscr{J}_{-} generates R;

P is a \mathscr{J} -quasigenerator if and only if P \mathscr{J} -generates all the submodules of P^n , $n \in \mathbb{Z}^+$.

If P \mathscr{J} -generates M and M \mathscr{J} -generates N, then P \mathscr{J} -generates N. Thus a \mathscr{J} -generator must \mathscr{J} -generates every R modules. If \mathscr{J} \mathscr{J} , then $P\mathscr{J}$ -generates M provided that $P\mathscr{J}$ -generator M. Hence a generator is an \mathscr{J} -generator for every Gabriel topology \mathscr{J} on R.

Example 2.2. Let R = Z(x) and P = (2,x), the ideal of R generated by 2 and x. Then P_R is a \mathcal{D} -generator but P_R is not a generator, where \mathcal{D} is the dense topology on R.

Lemma 2.3. Let R be a ring and P_R be a right R-module. Let \mathscr{F}_P^0 denote the Gabriel topology on R cogenerated by the injective hull E(P) of P. If P \mathscr{F}_P^0 -generates each of it submodules, then

- (i) For each $P' \in \mathcal{F}_{P}^{0}(P)$, $\operatorname{Hom}_{R}(P, P') = \{s \in \operatorname{End}_{R}P : s(P) \subseteq P'\} \subseteq \operatorname{End}_{R}P$ is a dense right ideal of $\operatorname{End}_{P}P$.
 - (ii) Conversely, if **J** is a dense right ideal of $\operatorname{End}_R P$ then $\mathbf{J}P = \{\sum_i f_i(p_i) : f_i \in \mathbf{J}, p_i \in p\} \in \mathscr{F}_P^0(P)$.

Proof. (i) Let $P' \in \mathscr{F}_{P}^{0}(P)$, we will show that $\operatorname{Hom}_{R}(P, P')$ is dense in $\operatorname{End}_{R}P$. Let $f, 0 \neq g \in \operatorname{End}_{R}P$; then $P'' = f^{-1}(P') \in \mathscr{F}_{P}^{0}(P)$ by Lemma 1.2. Since $P = f^{-1}(P') \in \mathscr{F}_{P}^{0}(P)$ generates P'', Trace $f'' \in \mathscr{F}_{P}^{0}(P'') \subseteq \mathscr{F}_{P}^{0}(P)$, by Lemma 1.3, we have $f' \in \mathscr{F}_{P}^{0}(P'') \subseteq \mathscr{F}_{P}^{0}(P''$

(i i) Assume J is a dense right ideal of $\operatorname{End}_R P$. We will see that $\operatorname{J} P \in \mathscr{F}_F^0(P)$. Suppose it is not the case, then there exists submodule P' of P such that $P' \supseteq \operatorname{J} P$ and $\operatorname{Hom}_R(P'/\operatorname{J} P,P) \neq 0$ (See Lemma vi .3.8, [1]). Let $0 \neq f \in \operatorname{Hom}_R(P',P)$ be such that $f(\operatorname{J} P) = 0$. Since $\operatorname{Trace}_P P \in \mathscr{F}_F^0(P')$, we have $f(\operatorname{Trace}_P P) \neq 0$. Thus there exists a $g \in \operatorname{Hom}_R(P,P') \subseteq \operatorname{End}_R P$ such that $fg \neq 0$ ($fg \in \operatorname{Im}_R P$) such that $fg \neq 0$ ($fg \in \operatorname{Im}_R P$) such that $fg \neq 0$ ($fg \in \operatorname{Im}_R P$).

Eng_RP). If $s \in (J:g)$, then $gs \in J$ and $fgs(P) = f(gs(P)) \subseteq f(JP) = 0$, that is fgs = 0; $(fg) \cdot (J:g) = 0$, which contradicts the density of J.

Let P_R , M_R be right R-modules, and let \mathscr{F} be a Gabriel topology on R. Then the following diagram

$$\operatorname{Hom}_{R}(P, M) \xrightarrow{i} P_{\mathscr{G}} \operatorname{Hom}_{R}(P, M)$$

$$\downarrow^{q} \qquad \uparrow^{q} \Phi_{P,M} \qquad (**)$$

$$\operatorname{Hom}_{R_{\mathscr{G}}}(P_{\mathscr{G}}, M_{\mathscr{G}})$$

commutes, where i is the canonical mapping, and q is the mapping $f o f_{f}$. If M is \mathcal{F} -torsionfree, then i is injective, and so is q. If we regard P_{f} Hom_R(P, M), Hom_{R_f} (P_{f}, M_{f}) as canonical right End_RP-modules, then all the mappings in the diagram above are End_RP-homomorphisms.

Theorem 2.4. Let P_R be a right R-module such that P is a \mathscr{F}_P^0 -quasigenerator. If M_R is a \mathscr{F}_P^0 -torsionfree right R-module, then $\operatorname{Hom}_R(P, M) \to \operatorname{Hom}_{R_{\mathscr{F}}}(P_{\mathscr{F}_0})$, $M_{\mathscr{F}_0}$ is the localization of $\operatorname{Hom}_R(P, M)$ under the dense topology \mathscr{D} of $\operatorname{End}_R P$. Specially, $\operatorname{End}_R P \to \operatorname{End}_{R_{\mathscr{F}_0}}(P_R)$ is the maximal right quotient ring of $\operatorname{End}_R P$.

Proof. By Lemma 2.3 and Lemma 1.3, we know that $\operatorname{Hom}_R(P, M)$ is \mathcal{D} -torsion free. Using Diagram (*), it suffices to show that $\operatorname{Hom}_R(P, M) \to P_{\text{gr}} \operatorname{Hom}_R(P, M)$ is the \mathcal{D} localization of $\operatorname{Hom}_R(P, M)$. We will show this by two steps.

(i) There exists an $\operatorname{End}_R P$ -monomorphism $\Psi : (\operatorname{Hom}_R(P, M)) \xrightarrow{p} P_{\mathcal{F}_p} \operatorname{Hom}_R(P, M)$ such that the following diagram

$$\operatorname{Hom}_{R}(P, M) \xrightarrow{i} P_{\mathscr{F}_{r}} \operatorname{Hom}_{R}(P, M)$$

$$\searrow q \qquad \nearrow \Psi$$

$$(\operatorname{Hom}_{R}(P, M)_{\mathscr{P}})$$

commutes, where i, q are the canonical homomorphisms.

Let $x \in (\operatorname{Hom}_{\mathbb{R}}(P, \mathbb{M})_{\mathfrak{D}})$ be represented by $\xi : J_{\operatorname{End}P} \to \operatorname{Hom}_{\mathbb{R}}(P, \mathbb{M})_{\operatorname{End}}$ with $J \in \mathcal{D}$. Then $JP \in \mathscr{F}_{P}^{0}(P)$ by Lemma 2.3. Let $\eta : JP \to \mathbb{M}$, $\sum_{i=1}^{n} s_{i}(p_{i}) \to \sum_{i=1}^{n} \xi(s_{i})(p_{i}); \eta$ is well defined; for, if $\sum_{i=1}^{n} s_{i}(p_{i}) = 0$ then for every $f \in \operatorname{Hom}_{\mathbb{R}}(P, (p_{1}, \dots, p_{n})\mathbb{R}))$ we have $\sum_{i=1}^{n} s_{i}\pi_{i}f = 0$, where π_{i} is the i-th projection $P^{n} \to P$; since ξ is an $\operatorname{End}_{\mathbb{R}}P$ -homomorphism and $\pi_{i}f \in \operatorname{End}_{\mathbb{R}}P$ we have $\sum_{i=1}^{n} \xi(s_{i})(\pi_{i}f) = 0$; but $\operatorname{Trace}_{(P_{1}, P_{2}, \dots, P_{n})\mathbb{R}} = P \in \mathscr{F}_{P}^{0}(P_{1}, P_{2}, \dots, P_{n})\mathbb{R})$, hence $\sum_{i=1}^{n} \xi(s_{i})(p_{i}) = 0$ by Lemma 1.3. Define $\Psi(x) \in P_{\mathscr{F}_{P}^{0}} \to \operatorname{Hom}_{\mathbb{R}}(P, \mathbb{M})$ to be represented by η , then Ψ is an $\operatorname{End}_{\mathbb{R}}P$ -monomorphism. Moreover, the diagram above commutes.

(ii) $i(\operatorname{Hom}_R(P, M))$ is a rational $\operatorname{End}_R P$ —submodule of $P_{\mathscr{F}}\operatorname{Hom}_R(P, M)$. Let $x, 0 \neq y \in P_{\mathscr{F}_0}\operatorname{Hom}_R(P, M)$ be represented by $\xi: P' \to M$ and $\eta: P'' \to M$ respectively. Then $\operatorname{Trace}_{P' \cap P'} P \in \mathscr{F}_P^0(P' \cap P'') \subseteq \mathscr{F}_P^0(P'')$, and $\eta(\operatorname{Trace}_{P' \cap P''} P) \neq 0$ by Lemma 1.3.

Hence there exists an $s \in \text{Hom}_{\mathbb{R}}(P, P' \cap P'') \in \text{End}_{\mathbb{R}}P$ such that $\eta s \neq 0$, and $\xi s \in \text{Hom}_{\mathbb{R}}(P, M)$. That is, $x \in i(\text{Hom}_{\mathbb{R}}(P, M))$ and $y \in s \neq 0$.

With slight restriction of the terminology used in [7], we have the following corollary.

Corollary 2.5. (c.f. Theorem 3.5, [3]). Let P_R be a right R-module such that P generates each submodules of P^n , $n \in \mathbb{Z}^+$. Let $S = \operatorname{End}_R P$, $H = \operatorname{End}_R (E(P))$. Then the following statements are equivalent.

- (1) H is a right selfin jective ring and is isomorphic to S'_{max} .
- (2) $\mathbf{H} \cong \mathbf{S}'_{\max}(\mathbf{H} \in \beta \rightarrow \beta | \mathbf{P}_{\mathbf{g}^0})$.
- (3) $H_s \cong E(S_s)$.
- (4) I(J) = 0 for every $J \in K(S)$ (Definition see [3]), where I(J) denotes the left annihilator of J in S.
 - (5) $E(P_R) = E_{\mathcal{I}^0}(P_R) = P_{\mathcal{I}^0}$
- (6) For any R-submodule M of P and any R-homomorphism $a: M \rightarrow P$ there exists a rational submodule L of P and R-homomorphism $\beta: L \rightarrow P$ such that $M \subseteq L$ and $\beta|_{M} = a$.
 - (7) $Ann_s(M) = 0$ for every $M \in K(P)$.

Example 2.6. Let D be a field and K be a proper subfield of D. Let

$$R = \begin{bmatrix} K & D \\ 0 & D \end{bmatrix}$$
, then R is a right nonsingular ring. Let $P = e_{11}R$, then P_R is a faith

ful nonsingular uniform right ideal of R with a minimal right ideal $N = \begin{bmatrix} 0 & D \\ 0 & 0 \end{bmatrix}$, and $Hom_R(P, N) = 0$. $End_RP \cong e_{11}R_{11} \cong K$. It is easy to see that $R'_{max} \cong M_2(D)$ and $P_{\mathcal{D}} \cong e_{11}R'_{max}$, $End'_{max}(P_{\mathcal{D}}) \cong D$; and the inclusion homomorphism $0 \to K \to D$ is the canonical monomorphism $0 \to End_RP \to End_{R_{max}}(P_{\mathcal{D}})$. This example shows that Theorem 2.4 is not true for right R-module which is not a quasigenrator, even in the case when P_R is finitely generated projective.

Remark. This example also gives a negative answer to the conjecture of Amistur (Remark 10.A, $\lceil 4 \rceil$).

References

- [1] Stenström, B., Rings of quotients. Springer-Verlag Berlin Heidelberg New York (1975).
- [2] Jacobson, N., Basic Algebra II. W. H. Freeman and Company San Francisco (1980).
- [3] Izawa, T., Maximal quotient ring of endomorphism rings of E(R_R) -torsionfree generators, Canad.

 J. Math. XXXIII(1981), 585—605.
- [4] Amitsur, S. A., Rings of Quotients and Morita contexts, J. Algebra 17(1971), 273-298.