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Abstract. An nxmatrix 4= {a, } will be called a 2-dimensional matrix of
order n, We shall study groups of 2m -dimensional matrices of order n over a
field of characteristic 0 with respect to an associative matrix product and we
ohtain the dimensions of such matrix groups.

Introduction There are several papers on n-dimensional matirces (cf [3,4,
5,6,71). Sokolov [ 77 is significant, Oldenburger { 6 ] considered determinants
of n-dimensional matrices., We describe some of the results of this paper. Let'
R, C, and H denote respectively the real number field, the complex number
filed and the field of the real quaternions. Let Mzm, ,(F) denote the set of all

- 2m-dimensional matrices of order n over a field Fe¢{R,C, H}, In M, ,(F) there
is an associative matrix product (see [5]) and under this matrix product M om, n
(F) forms a matrix group (and ring). We consider M_ (F) as a vector space
and we define an inner product (X,Y) for X, Y in M, ,(F). Then we can
have a matrix group S(2m, n, F)={AeM, ,(F):{XA,YA) for all X,YeM_ (F)}.
If G is a group, its dimension is the dimension of the vector space T (G) of the

prn

tangent vectors to G at the identity I, To get the dimension of the group S (2m,
n, F)=S(F) we need T(S(F)). We shall prove that T (S(F))=So(2m,n,F}={A, '
€M, (F):A+A'=0}. where A" denotes the transpose and conjugate matrix of A.
We find the dimension of T (S (F)), the vector space over the real numbers R,
using a method of ‘one parameter subgroups’ .

| . A Matrix product and an Inner Product of Two Vectors

We begin with the following definitions. ,

Definition 1'°7 Let A=(a,, .., ) and B=(b,, ., ) be two matrices in
M,, . (F). We define a matrix product 4B=C = (c; ;.. ) as follows.

n n n
cillzu-iz = E Z... 2 al i, oosf tlln-[ bt Fosel | seef
L] t|=1 ,z.__l ’_=l 172 m

2 - 12 m 2m

Note that this matrix product is associative ‘®*Jand under this matrix product,

* Received Sept .22, 1987.
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M, .(F)forms a semigroup (and a ring).
Definition 2 The inner product of two vectors X =(x;;.,) and Y= (y;;.;)
in M_ (F) is defined as follows:
<X’ Y> = Z: xtltz'"tm.'y—tltz."’m (i = ly 2v“" n)

7,=1
where y denotes the conjugate of yeC or yeH.
We list the following two lemmas without proofs,
Lemma | The inner product (X, Y) of two vectors X and Y in M (F)
has the following properties.
(1) (X, Y+Z)=(X,Y)+<{ X, 2Z), {X+Y,2Z)=<(X, Z)+(Y, Z) for all X,Y,
and ZeM, (F).
(11) & X,Y)>={aX,Y) and (X, Y)a={X, a¥) for all aeF and X, YeM AF).
(iii) (X, ¥Y) =Y, X) for all X, YeM, (F).
(iv) (X,Y)>0 and (X, X) = iff X—(),
Lemma 2 For any X,YeM (F) and AeM
(X, YA,
From now on F denotes a field in {R, C, H}. We prove the following theo-

(F), we have that (XA4,Y)=

2m,n

rem. ‘
Theorem 3 Let S(2mn, F)={AecM
M, (F)l. Then S(2m, n, F) is a group.
Proof Let A=(a;;. ), B=(b;;.,)€S(2m,n, F). Then we see that ( XAB, Y AB)
={ XA, YA =(X,Y) for >ll X,YeM, (F), and hence ABeS (2m, n, F). We know

(F)( XA, YA =(X,Y) for all X, Ye¢

2ms

that there exists —(x, i wiz,)s Which is defined by (see [4 ).
X _J1 i Ciyiyeei) = Uiy i),
hireha = Ly otherwise,
such that XI=IX=X and Al =IA= A for all Xe¢M, (F) and AeM,, '(F). Thus

Ie¢S(2m, n, F). We use I= (6,’" '”": ) for the identity . where § denotes the Kro-

necker’s delta. Let e; .., be a member of M, (F) whose (i iy~ )-entry is |
172 -

m.n
and others are zero., We consider <e,l, A € e, A .
We first see that .
Jl "1 m
<ei‘ 12';".»-A’ ei‘ jl A) 6 )

and also see that

<el‘iz---l~A’ ejl ]1...].‘4) =<a1|31...1~1]...1; ""a i k k,oek? s 4y ijiyoesi nneen )s
,,)>

(ajl jz"'jm 111, ’ ajl jz...j k k ..-k"’ *tya;

AL JyJyecinne

n

= k;1ai‘ iy, Ky deyooek Bl Kyeenk Jy Jyeerd, 0
=

which is the (i iy J Jy*eJ,) -€0try of AA

(t: 1’2’-", n) .

7 . Hence this entry must be 1 if i =
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J, (P=1,2,%,m) or 0 if i xj, .

Therefore AA'=1. We can also see that 4'A=1_, Thus A '=A4", Now we
see that ( XA, XAy =(Xx4'A4, YA AY =(X, Y). This proves Theorem 3., We
may call. S(2m, n, F) an orthogonal group.

Note Referring the identity I in the proof of Theorem 3, we define GL (2m,
n, F)={AeM,, ,(F):AA" =1} as the general linear group in M, (F).

2 . Dimensions of Vector Spaces So(2myn, F) .

2my n

In this section we compute dimensions of vector spaces So(2m, n, F) over
the real numbers R . '

Definition 3 '’ We define So(2m, n, F)={AeM, (F):A+A™=0). A matrix
A in So(2m, n, F) is called a F-skew symmetric matrix.

Lemma 4 So(2m, n, F) is a vector space over R.

Proof We see that the zero matrix 0 is in So(2m, n, F). Let A, BeSo(2m, n
F). Then we see that (4+B) + (A+ B) = and hence A+ BcSo(2m, n, F). We
also see that rd+ (rd)'=r(A+ A7) =0 for all reR. Therefore r4eSo(2m, n, F).
This proves the lemma.

2ms n

Dim V denotes the dimension of a vector space V (over R).
Theorem § (i) Dim So(2m, n, R) =n"(n"-1)/2.
(ii) Dim So(2m, n, C) = n*".
(iii) Dim So(2m, n, H) =n"(2n" +1).
Proof We prove (i). To get the dimension of So(2m, n, R) we must find
a basis. Let AEi."z'

denote the matrix in M (R) whose entries are all

zero except the (il,mil;fz--ilmjljzmjm) entry, which is |, and the (j, jyeeej i i eeei,)-
entry, which is — 1( (i, )5 (Jj, j,*+*j,)). Then we see that E","z""',.!'.!'z"‘f..(SO(zm’
n, R). We redefine these Ei,"".i."'f.. only for i -"j,, it is easy to see that they
form a basis for So(2m, n, R), and it is not difficult to count that there are (n"—
D+ "=2)+ee+1=n"(n"-1)/2 of them. This proves that dim So(2m, n, R) =
n"(n"-1)/2.

For (ii), Let B=(b, .; ;..;) be a matrix in So(zm, n,C). Then B+B' =y,
from which we get that b"."z""'mfl!'z"'i,.+3i,1’,-'-j,,ili,'"i,.=0 for any (ijiyei, jijy;***J,)
entry of B, If bi.iz"'i,i.iz"‘i,=c+di’ then Fi.fz"'i.”, ey iy,

—c+di , If Gijiygsi, )= (jjs*J,)» then c+di=-c+di and c=0. Consequently,

2my
m

= —c~di andbjlj =

. . m m m ‘e 2m
the number of elements consisting a basis is equall to n"+2n(n" —-1)/2=n".
yeS(2m, n, H), we have that C+C"7=0 and

“For (iii), letting C=(¢;; .; .
ci -"--l' jl-"j j|j1---j ilir.-i = 0 for any (iliz...imj|jz...j”') entry Of C. If Ciliz."im'iljzu}(jm

1 " m . m _: . . o .+ -+ :
= x+ yi+ uj+vk, then cjlmj — —x-yi—uj-yvk and € o iyoeri, X+ yituj+o

If iy DX Giyigcin) then x=0 and Ci i jl...jm=yi+uj +pk . Consequently, the
number of elements consisting a basis is equal to 3™+ 4(n"(n™ 1) /2=n"(20"+ 1).

+c
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This proves Theorem. 5,

3. Curves in a Vector Space

We need the following definition .

Definition 4 Let V be a finite dimensional vector space. r is called a curve
in V if z:(a, b)—V is a continuous function, where (a,b) is an open interval in
R. For ce¢(a, b), we say that r is differentiable at ¢ if

z(c+ h)-m(c)
h

lim

h—~0
exists. When this limit exists, it is a vector in V. We denote it by n’(¢) and -
(R), M, (C) and M, _  (H)
are real vector spaces of dimensions n’", 2n”" and 4n’", respectively. If G is a
(F) with all
values #(7) for te(a, b) lying in G. If =, and r, are curves such that z,:(a, b)>G

call the tangent vector to r at n(c). Note that M

2m, n 2m,n 2m, n

matrix group in M (F), then a curve in G is a curve in M

2m,n 2m:n

then the product curve is defined by (x,7,)(¢) =n,(t)n,(2), for te(a, b).
(F). Let T be the set of all
tangent vectors r’{() to the curves 7#:(-s,5)—>G with z(0) =171, the identity matrix
of G. Then T is a subspace of M, (F). |

Proof Let 7/(0)€T (i=1,2). Then (z,7,)(0) =1, (z,;7,)(0)=7{(0)7,(0) +7,(0)
75(0) =7,(0) +73(0) €T, and hence T is closed under vector addition. Let #{(0)eT
and ce¢R. Define n,(r) =x,(ct). Then we see that x,(0) =z,(0) =1 and 7;(0) =
cx,(0) since 7j(t) = cx,(t). This proves Theorem 6,

Theorem § Let G be a matrix group in M

2myn

Definition 5([1,p.37]) If G is a matrix group, its dimension is the dimen-
sion of the vector space T (G) which is the set of all tangent vectors of G at I,
Let T be the set of all tangent vectors defined as in Theorem 6.
Theorem 7 If z is a curve through the identity, that is, z(0)=17, then z'(0)
eT is a F-skew symmetric matrix in So(2m, n, F).
Proof By differentiating both sides of z(u)r '(u)=1, we obtain that z’(u)r'
u)+x(u)(x ")(u)y =0 and z/(0) + (z ")(0) = ¢, which shows that 7'(0) is F-skew
symmetric, This proves Theorem 7,
Corollary
(i) dim S(2m, n, R)<<n™(n"-1)/2.
(ii) dim S(2m n, C)<n’".
(iii) dim S(2m, n, H)<n"™(2n™ +1).
Proof By Theorem 3, S (2m, n, F) is a matrix group. We see that dim S (2m,
n, F) =dim T (S (2m, n, F))=dim{x’(0):n(u)eS(2m, n, F)}., Since 7’(0)¢So(2m, n,
F), dim S(2m, n, F) can not exceed dim so(z2m, n, F), Fe{R, C, H}, This proves
Corollary .
Let ¢:G,—>G, be a homomorphism of matrix groups G, and G, . Since G, are
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in vector. spaces, it is clear what it means for ¢ to be continuous., From now
on homomorphism always means continuous homomorphism . This b‘eing so, a
curve r:(a, b)-~G, gives a curve ¢r:(a,b) =G, by (px)(u)=¢ (z(u)) in G,.

Definition § A homomorphism ¢:G,—~G, of matrix groups is smooth if for
every differentiable curve z in G, ¢n is differentiable. This definition is needed
in the next section,

4 . A One Parameter Subgroup in a Matrix Group.

Using Definition ¢, we define ‘one parameter subgroup’ as follows .

Definition 7 ‘A one parameter subgroup r in a matrix group G(CMZ;,,,('F)) is
a smooth homomorphism 7:R—G with 7(s+1) =x(s)n(z) for all sand ¢ in R.

Note that it suffices to know 7 on some open neighborhood U of ¢ in R.
For xe¢R, some ;}—er and z(x)=(w(—,lTX))"- ‘

Example Let AeM, (F). Then x(u) =¢€"* is a one parameter subgroup of
GL (2m, n, F). (We often use ¢ instead of u).

Theorem 8 7 is a one parameter subgroup of GL (2m, n, F) iff there exists
A in M, (F) such that z(s) = '* with 77(0) = 4.

Proof Suppose 7 is a one parametef subgroup of GL (2m, n, F), and let .
logz(¢) =A(¢). Then 1 is a curve in M,, (F) with z(z) = e*"’, Set 1’(0)=A. Then
for any fixed ¢,,

Aty + h) = A(2y) logn(ty+ h) — logn (2,)

A(ty) = lim = lim
0 h—( h h—( h
| t h) —logx(t,)
 lim ogn ( 0)7:2 ) gnlty) _ lim loghw(h) S0 =A.
-~ h—~0 k.

This means that 1’(r) is independent of . Hence, A(f)=tA which implies
that A(¢) is a line thgrough QeM
there exists A in M

2ma(F) and x(¢) =€'*, Conversely, suppose that
2ma(F) such that z(z)=e" with z(0) = A. Then

2 422 3 3 2 42

t°A t'A _ N g ;)

ST T T 2(0) =1, a(—-t)=I-14+ 51

and n(¢t)z(-1t) =1. This meahs that z(t)eGL (2m, n, F), Finally, we see that . .

aty=I+ A+

a(t+s) =x(t)n(s). This proves Theorem 8, This theorem shows that any tangen
vector to GL (2m, n, F) is the derivative at ( of some one parameter subgroup.
Lemma 9 If AcSo(2m, n, F), then ¢** e™ =1, where ucR.
Proof By the assumption, A+ A= for AeSo(2m, n, F). Then we see that

— " ATATH" SR
MA (A)“ -t L1 13 n eese T
e " =T+u(A+A47) + +u(k=0 e 3] !)+ E)I,u,
N n A'l-k(A—l)k
where I,=1, I,= ::0 (n=ktTkr -

" We prove that I = for n>>] because I, =(0. We prove it by mathematical
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induction on n, We assume that we have proven that I, =0 for all r<an, where .
n is a fixed integer greater than 1, We define

ky_ (n=1)(n—2)e(n-k) AT
(n)_ n!k! aﬂd I(k)"" (n_k—)!k! .

Then we see that

I(n)= i Tk _I(k)y+I(m+ 1)+ T(m+2)+eee+1(n)

m
k= k=g

n-1
=(HATTAH H Im+ D L me2) + et T = TGO+ T

ko0

n

et A(A")""+——————(An;)" = A AU =,
that is, I (n)=0. Consequently, &“‘e ud)'= J = ¢° | This proves Lemma 9.

Theorem |0 Let A be a tangent vector to the orthogonal group S(2m, n, F).
Then there exists a unique one parameter subgroup = in S(2m, n, F) such that
A=x'(0).

Proof We have that A=7'(0) for some curve r in S(2m, n, F) since A4 is
a tangent vector to the orthogonal group S (2m, n, F). For any ue( - tyy t,) we
have 7(uir (@) =I and 7’(u)#(@) +x(u)(x(@')' =0, Letting u=0, we obtain that
7’(0) + (x ")’(Q) =0 which is equivalent to A+ A" =0. Thus Ae¢So(2m, n, F). Now
r(u)y=€"is a one-parameter subgroup of GL (2m, n, F) by Theorem 8, but it
lies in S (2m, n, F) because x(u)(x(u)' =ée*e“?" =1 by Lemma 9. This proves
Theorem 10,

Now we obtain the following proposition .

Proposition || ([1,p.53—p.54]).

(i) dim S(2m, n, R) = dim So(2m, n, R) =”—m(£;;l-—)——.
(ii) dim S(2m, n, C) =dim So(2m, n, C) =n""
(iii) dim S (2m, n, H) =dim So(2m, n, H) =n"(2n"+ 1) .

Proof It follows from Definition 7, Theorem 5 and Theorem 10.

S . A Problem

To pose a problem we need a definition,

Definition 8([1,p.93 and p. 127]) A k-torus is the cartesian product of &
circle groups. The rank of a matrix group G is the dimension of a maximal
torus in G .

Problem Let Fe¢{R, C, H}, Find ranks of S(2m, n, F).
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