On n-Dimensional Matrix Groups*

Jin Bai Kim and Alphonse Baartmas

(Dept. Math., West Virginia Univ. Morgantown, W. V. 26506, U. S.A.)

Abstract An $n \times \text{matrix } A = \{a_{ij}\}$ will be called a 2-dimensional matrix of order n. We shall study groups of 2m-dimensional matrices of order n over a field of characteristic O with respect to an associative matrix product and we obtain the dimensions of such matrix groups.

Introduction There are several papers on n-dimensional matirces (cf [3,4] 5, 6, 7]). Sokolov [7] is significant, Oldenburger [6] considered determinants of n-dimensional matrices. We describe some of the results of this paper. Let R, C, and H denote respectively the real number field, the complex number filed and the field of the real quaternions. Let $M_{2m, n}(F)$ denote the set of all 2m-dimensional matrices of order n over a field $F \in \{R, C, H\}$. In $M_{2m,n}(F)$ there is an associative matrix product (see [5]) and under this matrix product $M_{2m,n}$ (F) forms a matrix group (and ring). We consider $M_{m,n}(F)$ as a vector space and we define an inner product $\langle X, Y \rangle$ for X, Y in $M_{m,n}(F)$. Then we can have a matrix group $S(2m, n, F) = \{A \in M_{2m,n}(F) : \langle XA, YA \rangle \text{ for all } X, Y \in M_{m,n}(F)\}.$ If G is a group, its dimension is the dimension of the vector space T(G) of the tangent vectors to G at the identity I. To get the dimension of the group S(2m,n, F = S(F) we need T(S(F)). We shall prove that $T(S(F)) = So(2m, n, F) = \{A, A, B\}$ $\in M_{2m,n}(F): A+A^{-1}=0$, where A^{-1} denotes the transpose and conjugate matrix of A. We find the dimension of T(S(F)), the vector space over the real numbers R, using a method of 'one parameter subgroups'.

1. A Matrix product and an Inner Product of Two Vectors

We begin with the following definitions.

Definition [5] Let $A = (a_{i_1 i_2 \cdots i_{2m}})$ and $B = (b_{i_1 i_2 \cdots i_{2m}})$ be two matrices in $M_{2m,n}(F)$. We define a matrix product $AB = C = (c_{i_1 i_2 \cdots i_{2m}})$ as follows:

$$c_{i_1 i_2 \cdots i_{2m}} = \sum_{t_1=1}^{n} \sum_{t_2=1}^{n} \cdots \sum_{t_m=1}^{n} a_{i_1 i_2 \cdots i_m t_1 t_2 \cdots t_m} b_{t_1 t_2 \cdots t_m i_{m+1} \cdots i_{2m}}$$

Note that this matrix product is associative [5] and under this matrix product,

^{*} Received Sept . 22, 1987.

 $M_{2m,n}(F)$ forms a semigroup (and a ring).

Definition 2 The inner product of two vectors $X = (x_{ij...k})$ and $Y = (y_{ij...k})$ in $M_{m.n}(F)$ is defined as follows:

$$\langle X, Y \rangle = \sum_{t_i=1}^{n} x_{t_1 t_2 \cdots t_m} \overline{y_{t_1 t_2 \cdots t_m}} \quad (i = 1, 2, \cdots, n)$$

where \overline{y} denotes the conjugate of $y \in C$ or $y \in H$.

We list the following two lemmas without proofs.

Lemma ! The inner product $\langle X, Y \rangle$ of two vectors X and Y in $M_{m,n}(F)$ has the following properties.

- (i) $\langle X, Y + Z \rangle = \langle X, Y \rangle + \langle X, Z \rangle$, $\langle X + Y, Z \rangle = \langle X, Z \rangle + \langle Y, Z \rangle$ for all X, Y, and $Z \in M_{m,n}(F)$.
 - (ii) $a\langle X, Y \rangle = \langle aX, Y \rangle$ and $\langle X, Y \rangle \overline{a} = \langle X, aY \rangle$ for all $a \in F$ and $X, Y \in M_{m,n}(F)$.
 - (iii) $\langle \overline{X,Y} \rangle = \langle Y,X \rangle$ for all $X,Y \in M_{m,n}(F)$.
 - (iv) $\langle X, Y \rangle \geqslant 0$ and $\langle X, X \rangle = 0$ iff X = 0.

Lemma 2 For any $X, Y \in M_{m,n}(F)$ and $A \in M_{2m,n}(F)$, we have that $\langle XA, Y \rangle = \langle X, YA^{-1} \rangle$.

From now on F denotes a field in $\{R, C, H\}$. We prove the following theorem.

Theorem 3 Let $S(2m, n, F) = \{A \in M_{2m, n}(F) : \langle XA, YA \rangle = \langle X, Y \rangle$ for all $X, Y \in M_{m,n}(F)\}$. Then S(2m, n, F) is a group.

Proof Let $A = (a_{ij\cdots k})$, $B = (b_{ij\cdots k}) \in S(2m, n, F)$. Then we see that $\langle XAB, YAB \rangle = \langle XA, YA \rangle = \langle X, Y \rangle$ for all $X, Y \in M_{m,n}(F)$, and hence $AB \in S(2m, n, F)$. We know that there exists $I = (x_{i,i,\cdots i_{2m}})$, which is defined by (see [4]).

$$x_{i_1 i_2 \cdots i_{2m}} = \begin{cases} 1 & \text{if } (i_1 i_2 \cdots i_m) = (i_{m+1} i_{m+2} \cdots i_{2m}), \\ 0 & \text{otherwise,} \end{cases}$$

such that XI = IX = X and AI = IA = A for all $X \in M_{m,n}(F)$ and $A \in M_{2m,n}(F)$. Thus

 $I \in S(2m, n, F)$. We use $I = (\delta_{i_1 i_2 \cdots i_m}^{i_{m+1} i_{m+2} \cdots i_{2m}})$ for the identity I, where δ denotes the Kro-

necker's delta. Let $e_{i_1i_2\cdots i_m}$ be a member of $M_{m,n}(F)$ whose $(i_1i_2\cdots i_m)$ -entry is 1 and others are zero. We consider $\langle e_{i_1i_2\cdots i_m}A, e_{j_1j_2\cdots j_m}A\rangle$.

We first see that

$$\langle e_{i_1 i_2 \cdots i_m} A, e_{i_1 j_1 \cdots j_m} A \rangle = \delta_{i_1 i_2 \cdots i_m}^{j_1 j_2 \cdots j_m} ,$$

and also see that

$$\langle e_{i_1 i_2 \cdots i_m} A, e_{j_1 j_2 \cdots j_m} A \rangle = \langle a_{i_1 i_2 \cdots i_m 1 1 \cdots 1}, \cdots, a_{i_1 i_2 \cdots i_m k_1 k_2 \cdots k_m}, \cdots, a_{i_1 i_2 \cdots i_m n n \cdots n} \rangle,$$

$$\langle a_{j_1 j_2 \cdots j_m 1 1 \cdots 1}, a_{j_1 j_2 \cdots j_m k_1 k_2 \cdots k_m}, \cdots, a_{j_1 j_2 \cdots j_m n n \cdots n} \rangle \rangle$$

$$= \sum_{k_1 = 1}^{n} a_{i_1 i_2 \cdots i_m k_1 k_2 \cdots k_m} \overline{a}_{k_1 k_2 \cdots k_m j_1 j_2 \cdots j_m}, \quad (t = 1, 2, \cdots, n) .$$

which is the $(i_1 i_2 \cdots i_m j_1 j_2 \cdots j_m)$ -entry of AA^{-1} . Hence this entry must be 1 if $i_p =$

 j_p ($p=1,2,\dots,m$) or 0 if $i_p \pm j_p$.

Therefore $AA^{-1} = I$. We can also see that $A^{-1}A = I$. Thus $A^{-1} = A^{-1}$. Now we see that $\langle XA^{-1}, XA^{-1} \rangle = \langle XA^{-1}A, YA^{-1}A \rangle = \langle X, Y \rangle$. This proves Theorem 3. We may call S(2m, n, F) an orthogonal group.

Note Referring the identity I in the proof of Theorem 3, we define $GL(2m, n, F) = \{A \in M_{2m,n}(F) : AA^{-1} = I\}$ as the general linear group in $M_{2m,n}(F)$.

2. Dimensions of Vector Spaces So(2m, n, F).

In this section we compute dimensions of vector spaces So(2m, n, F) over the real numbers R.

Definition 3 [1] We define So(2m, n, F) = $\{A \in M_{2m,n}(F) : A + A^{-1} = 0\}$. A matrix A in So(2m, n, F) is called a F-skew symmetric matrix.

Lemma 4 So(2m, n, F) is a vector space over R.

Proof We see that the zero matrix 0 is in So(2m, n, F). Let A, $B \in So(2m, n F)$. Then we see that $(A+B)+(\overline{A+B})'=0$ and hence $A+B \in So(2m, n, F)$. We also see that $rA+(\overline{rA})'=r(A+A^{-1})=0$ for all $r \in R$. Therefore $rA \in So(2m, n, F)$. This proves the lemma.

Dim V denotes the dimension of a vector space V (over R).

Theorem 5 (i) Dim So(2m, n, R) = $n^m(n^m-1)/2$.

- (ii) Dim So(2m, n, C) = n^{2m} .
- (iii) Dim So(2m, n, H) = $n^{m}(2n^{m}+1)$.

Proof We prove (i). To get the dimension of So(2m, n, R) we must find a basis. Let $E_{i_1i_2\cdots i_mj_1j_2\cdots j_m}$ denote the matrix in $M_{2m,n}(R)$ whose entries are all zero except the $(i_1i_2\cdots i_mj_1j_2\cdots j_m)$ entry, which is 1, and the $(j_1j_2\cdots j_mi_1i_2\cdots i_m)$ entry, which is $-1((i_1i_2\cdots i_m)\pm(j_1j_2\cdots j_m))$. Then we see that $E_{i_1i_2\cdots i_mj_1j_2\cdots j_m}\in So(2m, n, R)$. We redefine these $E_{i_1\cdots i_mj_1\cdots j_m}$ only for $i_1 < j_1$, it is easy to see that they form a basis for So(2m, n, R), and it is not difficult to count that there are $(n^m-1)+(n^m-2)+\cdots+1=n^m(n^m-1)/2$ of them. This proves that dim $So(2m, n, R)=n^m(n^m-1)/2$.

For (ii), Let $B = (b_{i_1 \cdots i_m j_1 \cdots j_m})$ be a matrix in So(2m, n, C). Then $B + B^{-l} = 0$, from which we get that $b_{i_1 i_2 \cdots i_m j_1 j_2 \cdots j_m} + \overline{b}_{j_1 j_2 \cdots j_m i_1 i_2 \cdots i_m} = 0$ for any $(i_1 i_2 \cdots i_m j_1 j_2 \cdots j_m)$ entry of B. If $b_{i_1 i_2 \cdots i_m j_1 j_2 \cdots j_m} = c + di$, then $\overline{b}_{j_1 j_2 \cdots j_m i_1 i_2 \cdots i_m} = -c - di$ and $b_{j_1 j_2 \cdots j_m i_1 i_2 \cdots i_m} = -c + di$. If $(i_1 i_2 \cdots i_m) = (j_1 j_2 \cdots j_m)$, then c + di = -c + di and c = 0. Consequently, the number of elements consisting a basis is equal to $n^m + 2n^m(n^m - 1)/2 = n^{2m}$.

For (iii), letting $C = (c_{i_1 i_2 \cdots i_m j_1 \cdots j_m}) \in S(2m, n, H)$, we have that $C + C^{-i} = 0$ and $c_{i_1 \cdots i_m j_1 \cdots j_m} + \overline{c}_{j_1 j_2 \cdots j_m i_1 i_2 \cdots i_m} = 0$ for any $(i_1 i_2 \cdots i_m j_1 j_2 \cdots j_m)$ entry of C. If $c_{i_1 i_2 \cdots i_m j_1 j_2 \cdots j_m} = x + yi + uj + vk$, then $\overline{c}_{j_1 \cdots j_m i_1 \cdots i_m} = -x - yi - uj - vk$ and $c_{j_1 \cdots j_m i_1 \cdots i_m} = -x + yi + uj + vk$. If $(i_1 i_2 \cdots i_m) \neq (j_1 j_2 \cdots j_m)$ then x = 0 and $c_{i_1 \cdots i_m j_1 \cdots j_m} = yi + uj + vk$. Consequently, the number of elements consisting a basis is equal to $3n^m + 4(n^m(n^m + 1)/2) = n^m(2n^m + 1)$.

This proves Theorem 5.

3. Curves in a Vector Space

We need the following definition.

Definition 4 Let V be a finite dimensional vector space. π is called a curve in V if $\pi:(a,b)\to V$ is a continuous function, where (a,b) is an open interval in R. For $c\in(a,b)$, we say that π is differentiable at c if

$$\lim_{h\to 0}\frac{\pi(c+h)-\pi(c)}{h}$$

exists. When this limit exists, it is a vector in V. We denote it by $\pi'(c)$ and call the tangent vector to π at $\pi(c)$. Note that $M_{2m,n}(R)$, $M_{2m,n}(C)$ and $M_{2m,n}(H)$ are real vector spaces of dimensions n^{2m} , $2n^{2m}$ and $4n^{2m}$, respectively. If G is a matrix group in $M_{2m,n}(F)$, then a curve in G is a curve in $M_{2m,n}(F)$ with all values $\pi(t)$ for $t \in (a,b)$ lying in G. If π_1 and π_2 are curves such that $\pi_i : (a,b) \to G$ then the product curve is defined by $(\pi_1 \pi_2)(t) = \pi_1(t)\pi_2(t)$, for $t \in (a,b)$.

Theorem 6 Let G be a matrix group in $M_{2m,n}(F)$. Let T be the set of all tangent vectors $\pi'(0)$ to the curves $\pi:(-s,s)\to G$ with $\pi(0)=I$, the identity matrix of G. Then T is a subspace of $M_{2m,n}(F)$.

Proof Let $\pi'_{i}(0) \in T$ (i = 1, 2). Then $(\pi_{1}\pi_{2})(0) = I$, $(\pi_{1}\pi_{2})'(0) = \pi'_{1}(0)\pi_{2}(0) + \pi_{1}(0)$ $\pi'_{2}(0) = \pi'_{1}(0) + \pi'_{2}(0) \in T$, and hence T is closed under vector addition. Let $\pi'_{1}(0) \in T$ and $c \in \mathbb{R}$. Define $\pi_{2}(t) = \pi_{1}(ct)$. Then we see that $\pi_{2}(0) = \pi_{1}(0) = I$ and $\pi'_{2}(0) = c\pi'_{1}(0)$ since $\pi'_{2}(t) = c\pi'_{1}(t)$. This proves Theorem 6.

Definition 5 ([1, p.37]) If G is a matrix group, its dimension is the dimension of the vector space T(G) which is the set of all tangent vectors of G at I.

Let T be the set of all tangent vectors defined as in Theorem 6.

Theorem 7 If π is a curve through the identity, that is, $\pi(0) = I$, then $\pi'(0) \in T$ is a F-skew symmetric matrix in $S_0(2m, n, F)$.

Proof By differentiating both sides of $\pi(u)\pi^{-t}(u) = I$, we obtain that $\pi'(u)\pi^{-t}(u) + \pi(u)(\pi^{-t})'(u) = 0$ and $\pi'(0) + (\pi^{-t})'(0) = 0$, which shows that $\pi'(0)$ is F-skew symmetric. This proves Theorem 7.

Corollary

- (i) dim $S(2m, n, R) \le n^m (n^m 1)/2$.
- (ii) dim $S(2m, n, C) \leq n^{2m}$.
- (iii) dim $S(2m, n, H) \leq n^m (2n^m + 1)$.

Proof By Theorem 3, S(2m, n, F) is a matrix group. We see that dim $S(2m, n, F) = \dim T(S(2m, n, F)) = \dim \{\pi'(0) : \pi(u) \in S(2m, n, F)\}$. Since $\pi'(0) \in So(2m, n, F)$, dim S(2m, n, F) can not exceed dim So(2m, n, F), $F \in \{R, C, H\}$. This proves Corollary.

Let $\varphi:G_1\to G_2$ be a homomorphism of matrix groups G_1 and G_2 . Since G_i are

in vector spaces, it is clear what it means for φ to be continuous. From now on homomorphism always means continuous homomorphism. This being so, a curve $\pi:(a,b)\to G_1$ gives a curve $\varphi\pi:(a,b)\to G_2$ by $(\varphi\pi)(u)=\varphi(\pi(u))$ in G_2 .

Definition 6 A homomorphism $\varphi:G_1 \to G_2$ of matrix groups is smooth if for every differentiable curve π in G_1 , $\varphi\pi$ is differentiable. This definition is needed in the next section.

4. A One Parameter Subgroup in a Matrix Group

Using Definition 6, we define 'one parameter subgroup' as follows.

Definition 7 A one parameter subgroup π in a matrix group $G(\subset M_{2m,n}(F))$ is a smooth homomorphism $\pi: R \to G$ with $\pi(s+t) = \pi(s)\pi(t)$ for all s and t in R.

Note that it suffices to know π on some open neighborhood U of 0 in R. For $x \in R$, some $\frac{1}{n}x \in U$ and $\pi(x) = (\pi(\frac{1}{n}x))^n$.

Example Let $A \in M_{2m,n}(F)$. Then $\pi(u) = e^{uA}$ is a one parameter subgroup of GL(2m, n, F). (We often use t instead of u).

Theorem 8 π is a one parameter subgroup of GL (2m, n, F) iff there exists A in $M_{2m,n}(F)$ such that $\pi(t) = e^{tA}$ with $\pi'(0) = A$.

Proof Suppose π is a one parameter subgroup of GL (2m, n, F), and let $\log \pi(t) = \lambda(t)$. Then λ is a curve in $M_{2m,n}(F)$ with $\pi(t) = e^{\lambda(t)}$. Set $\lambda'(0) = A$. Then for any fixed t_0 ,

$$\lambda'(t_0) = \lim_{h \to 0} \frac{\lambda(t_0 + h) - \lambda(t_0)}{h} = \lim_{h \to 0} \frac{\log \pi(t_0 + h) - \log \pi(t_0)}{h}$$
$$= \lim_{h \to 0} \frac{\log \pi(t_0) \pi(h) - \log \pi(t_0)}{h} = \lim_{h \to 0} \frac{\log \pi(h)}{h} = \lambda'(0) = A.$$

This means that $\lambda'(t)$ is independent of t. Hence, $\lambda(t) = tA$ which implies that $\lambda(t)$ is a line thorough $0 \in M_{2m,n}(F)$ and $\pi(t) = e^{tA}$. Conversely, suppose that there exists λ in $M_{2m,n}(F)$ such that $\pi(t) = e^{tA}$ with $\pi'(0) = A$. Then

$$\pi(t) = I + A + \frac{t^2 A^2}{2!} + \frac{t^3 A^3}{3!} + \cdots, \quad \pi(0) = I, \quad \pi(-t) = I - tA + \frac{t^2 A^2}{2!} - \cdots$$

and $\pi(t)\pi(-t) = I$. This means that $\pi(t) \in GL(2m, n, F)$. Finally, we see that $\pi(t+s) = \pi(t)\pi(s)$. This proves Theorem 8. This theorem shows that any tangen vector to GL(2m, n, F) is the derivative at 0 of some one parameter subgroup.

Lemma 9 If $A \in So(2m, n, F)$, then $e^{uA} e^{(\overline{uA})'} = I$, where $u \in R$.

Proof By the assumption, $A + A^{-t} = 0$ for $A \in So(2m, n, F)$. Then we see that

$$e^{uA}e^{\overline{(uA)}^t}=I+u(A+A^{-t})+\cdots+u^n(\sum_{k=0}^n\frac{A^{n-k}(A^{-t})^k}{(n-k)!\,k!})+\cdots=\sum_{n=0}^\infty I_nu^n,$$

where

$$I_0 = I$$
, $I_n = \sum_{k=0}^{n} \frac{A^{n-k} (A^{-t})^k}{(n-k)! k!}$.

We prove that $I_n = 0$ for n > 1 because $I_1 = 0$. We prove it by mathematical

induction on n. We assume that we have proven that $I_t = 0$ for all t < n, where n is a fixed integer greater than 1. We define

$$\binom{k}{n} = \frac{(n-1)(n-2)\cdots(n-k)}{n! \ k!}$$
 and $I(k) = \frac{A^{n-k}(A^{-k})^k}{(n-k)! \ k!}$.

Then we see that

$$I(n) = \sum_{k=0}^{n} I(k) \sum_{k=0}^{m} I(k) + I(m+1) + I(m+2) + \cdots + I(n)$$

$$= {m \choose n} A^{n-m} (A^{-t})^m + I(m+1) + I(m+2) + \cdots + I(n) = \sum_{k=0}^{n-1} I(k) + I(n)$$

$$= \frac{(n-1)!}{n! (n-1)!} A(A^{-t})^{n-1} + \frac{(A^{-t})^n}{n!} = \frac{1}{n!} (A + (A^{-t})) (A^{-t})^{n-1} = 0,$$

that is, I(n) = 0. Consequently, $e^{uA}e^{(\overline{uA})'} = I = e^0$. This proves Lemma 9.

Theorem 10 Let A be a tangent vector to the orthogonal group S(2m, n, F). Then there exists a unique one parameter subgroup π in S(2m, n, F) such that $A = \pi'(0)$.

Proof We have that $A = \pi'(0)$ for some curve π in S(2m, n, F) since A is a tangent vector to the orthogonal group S(2m, n, F). For any $u \in (-t_0, t_0)$ we have $\pi(u)\overline{\pi(u)}^t = I$ and $\pi'(u)\overline{\pi(u)}^t + \pi(u)(\overline{\pi(u')})^t = 0$. Letting u = 0, we obtain that $\pi'(0) + (\pi^{-1})'(0) = 0$ which is equivalent to $A + A^{-1} = 0$. Thus $A \in So(2m, n, F)$. Now $\pi(u) = e^{uA}$ is a one-parameter subgroup of GL(2m, n, F) by Theorem 8, but it lies in S(2m, n, F) because $\pi(u)(\overline{\pi(u)}^t = e^{uA}e^{u(A^{-1})} = I$ by Lemma 9. This proves Theorem 10.

Now we obtain the following proposition.

Proposition [[(1, p.53-p.54]).

- (i) dim $S(2m, n, R) = \dim So(2m, n, R) = \frac{n^m(n^m-1)}{2}$.
- (ii) dim $S(2m, n, C) = \dim So(2m, n, C) = n^{2m}$
- (iii) dim $S(2m, n, H) = \dim So(2m, n, H) = n^m(2n^m + 1)$.

Proof It follows from Definition 7. Theorem 5 and Theorem 10.

5 . A Problem

To pose a problem we need a definition.

Definition 8([1, p. 93 and p. 127]) A k-torus is the cartesian product of k circle groups. The rank of a matrix group G is the dimension of a maximal torus in G.

Problem Let $F \in \{R, C, H\}$. Find ranks of S(2m, n, F).

References

- [1] M.L. Curtis, Matrix groups, Springer-Verlag, 1979.
- [2] E.B. Davies, One parameter semigroups, Academic Press, 1980.
- [3] R. Kaneiwa, N-dimensional matrices and nth order invariant forms, (Japanese), Surikaiseki K. K. 274(1976), 83-97: MR 58-10955.
- [4] Jin B. Kim and James E. Dowdy, Determinants of *n*-dimensional matrices, J. Korean Math. Soc. 17 (1980), 63—68: MR 81 k—15006.
- [5] Jin B. Kim and James E. Dowdy, On *n*-dimensional idempotent matrices, Publications de L'Institut Mathematique, Nouvelle Serie, tome 33—47 (1983), 119—122. MR 85e—15021.
- [6] R. Oldenburger, Higher dimensional determinants, Amer. Math. Monthly 47(1940), 25-33: MR 1-194.
- [7] N. P. Sokolov, Spatial matrices and their applications (Russian), Gosudarstv. Izdat. Fiz-Mat. Lit., Moscow, 1960, 300pp:MR 14—A 122.