A Note on Ideals of a Three-Dimensional Associative Algebra*

Li Senlin

(Yancheng Teacher's College, Province Jiangsu)

In this paper, we shall apply the theory of nilpotent radical to derive some results about ideals of a there-dimensional associative algebra over a field F and of an associative ring of order p^3 where p is a prime. These results are useful in studying the structure of the algebra and the ring.

Theorem | Let A be a three-dimensional associative algebra over a field F, N(A) the nilpotent radical of A. If $N(A) \pm 0$, then there exists a one-dimensional ideal of A included in N(A).

Proof If dim N(A) = 1, then N(A) is just desired. Now suppose dim $N(A) \neq 1$ and consider the following two cases.

(I) dim N(A) = 2. In this case, $A/N(A) \cong F$, and hence, there is an idempotent element u in A/N(A). By the idempotent lifting theorem, there exists an idempotent element e in A as a lifting of u. It is not difficult to check that e is linearly independent with any non-zero element in N(A). Thus, for any $a \in A$, we have

$a = ae + \beta n$, $a, \beta \in F$

where $n \in N(A)$ and $n \neq 0$. Since N(A) is the nilpotent radical, we can assert that $N(A)^2 \neq N(A)$, and hence, either $N(A)^2 \neq 0$ or $N(A)^2 = 0$. If $N(A)^2 \neq 0$, we have dim $N(A)^2 = 1$, which shows that $N(A)^2$ is just required. Now assume $N(A)^2 = 0$ and prove that there exists a one-dimensional ideal of A in N(A):

- (1) If A(N(A)) = N(A)A = 0, then N(A) is a direct summand of A. Since $N(A)^2 = 0$, for any non-zero element n in N(A), F[n] is a one-dimensional ideal of A in N(A).
- (2) If $A(N(A)) \neq 0$ and N(A)A = 0, then there exists an element n' in N(A) such that $en' \neq 0$. Obviously, F[en'] is a one-dimensional ideal of A in N(A).

Similarly, if A(N(A)) = 0 and $N(A)A \neq 0$, then there exists a one-dimensional ideal of A in N(A).

^{*} Received Jun. 16, 1987.

- (3) If $A(N(A)) \neq 0$ and $N(A)A \neq 0$, and $A(N(A))A \neq 0$, then there exists an element n' in N(A) such that $en'e \neq 0$. Evidently, F(en'e) is a one-dimensional ideal of A in N(A). If $A(N(A)) \neq 0$, $N(A)A \neq 0$ and A(N(A))A = 0, then there exists an element $n' \in N(A)$ such that $en' \neq 0$, and hence F(en') is a one-dimensional ideal of A in N(A).
 - (II) dim N(A) = 3. In this case, N(A) = A, that is, A is a nilpotent algebra.
- (1) If $A^2 = 0$, then, for any non-zero element a in A, F(a) is a one-dimensional ideal of A.
- (2) If $A^2 \neq 0$, then from $A^2 \neq A$ follows that either dim $A^2 = 1$ or dim $A^2 = 2$. Thus if dim $A^2 = 1$, A^2 is just a one-dimensional ideal of A; Otherwise, from $A^3 \neq A^2$ follows that either $A^3 = 0$ or dim $A^3 = 1$. If $A^3 = 0$, then for any non-zero element $a \in A^2$, F(a) is a one-dimensional ideal of A. If dim $A^3 = 1$, then A^3 is a one-dimensional ideal of A.

Summarizely, if $N(A) \neq 0$, then there exists a one-dimensional ideal of A included in N(A). This complets the proof of the theorem.

Theorem 2 Let A be a non-simple three-dimensional associative algebra over a field F. Then A has its one-dimensional proper ideal.

Proof Let N(A) denote the N-radical of A. If N(A) = 0, then A is an N-semisimple algebra. By the structure theorem for N-semisimple algebras, we have

$$A = A_1 \oplus A_2 \oplus \cdots \oplus A_n$$

where A_i are the simple algebra, and n>1. Thus A has at least one direct summand A_i as a one-dimensional ideal of A.

Now suppose $N(A) \pm 0$. By the theorem 1, there exists a one-dimensional ideal of A included in N(A). This complets the proof.

Theorem 3 Let R be an associative ring of order p^3 where p is a prime number. (I) If R is a simple ring, then R is a field; (I) If R is a non-simple ring, then R has a proper ideal of order p.

Proof (I) R is a simple ring. By the Wedderburn-Artin theorem, we have $R \cong D_n$

where D is a division ring. Since (D, +) is an subgroup of (R, +) and |D| > 1, we have

$$|D| = p^i \qquad (1 \leqslant i \leqslant 3)$$

and hence

$$p^3 = |R| = |D_n| = (p^i)^{n^2} = p^{in^2}$$

which implies that n=1. So R is a division ring, and hence R is a field.

(Π) R is a non-simple ring. We now prove that R has its proper ideal of order p.

- (1) If (R, +) is a cyclic group, to say, $(R, +) = \langle a \rangle$ where $o(a) = p^3$, then $\langle p^2 a \rangle$ is an ideal of order p in R.
- (2) If $(R, +) = \langle a \rangle \bigoplus \langle b \rangle$ where o(a) = p and $o(b) = p^2$. Since R is a non-simple, R has a proper ideal I where |I| = p or $|I| = p^2$. If |I| = p, our result is true. If $|I| = p^2$, and (I, +) is a cyclic group, to say, $(I, +) = \langle c \rangle$ where $o(c) = p^2$, then $\langle pc \rangle$ is an ideal of order p in R. If $|I| = p^2$ and (I, +) is not a cyclic group, then $(I, +) = \langle a \rangle \bigoplus \langle pb \rangle$ and $\langle pb \rangle$ is an ideal of order p in R.
- (3) $(R, +) = \langle a \rangle \bigoplus \langle b \rangle \bigoplus \langle c \rangle$ where o(a) = o(b) = o(c) = p. In this case, we can regard R as three-dimensional associative algebra over the field F(p). By the theorem 2, R has its proper ideal of order p. Our results follow from this.

Here we should point out, part (11) of the theorem 3 is due to Liu Keqin [2], but our proof is different from his.

References

- [1] N.Jacobson, Basic Algebra II, W. H. Freeman and Company, San Francisco, (1974).
- [2] Liu Keqin, J. of Math. (PRC), Vol.2(1982), No.1, 57-74.