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Abstract

Two new kinds of direct product of matrices are defined, Their properties
are investigated . Direct products of matrix and set of continuous functions are
also defined. Many complete sets of orthogonal functions, such as those sets given
by Walsh [2], Paley[3], Chrestenson{4 ], and Watari [ 5], may be generated by
these newkinds of direct product, Direct products are also applicable to the gene-
ration of sets of piecewise orthogonal functipns .

0. Introduction

The direct product (or Kronecker product)[lJ is an important matrix manipu-
lation , The direct product of two matrices A (myxn,) and B (m,xn,) (The number
in a pair of brackets behind a matrix symbol indicates the dimensions of the .
matrix), represented by AQB, is a matrix of dimension (mym, x n,n, ). Its ele-
ment on the jth row and jth columm is given by

- (AiQB),,=a,-ojob,,l,I
where a and b are elements of A and B respectively.
i =igm, +i,

io=E7:l—]](Zmo== {0,1,°,my~ 13 (a) =maxn, neZ, n<a (1)

il=imodmleZml
J=Jony+J,
oy
Jo=Gad <2,
jl=j mOd nlezn'
Given i and j, one may uniquely obtain i ,i,, j,, j, , Or vice versa,
-~ The following are some properties of the direct product . Their proofs can
be found in any textbook on matrix analysis.

(1) (A+B)R(C+D)=ARC +BRC +ARQD+BRD
* Received Dec.22,1987.
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(2) (ARKB)XC=4 X (BRC) .
(3) (AC)YR (BD) = (ARB)(CRD)
(4 ) The direct product of two orthogonal matricas is orthogonal ,
(5) The direct product of two symmetric matrices is symmetric, In addi-
tion, the self direct product, or direct power of 4 is represented by
A(2)2A®A, A(n):A(n—1)®A:A®A(n—1)

| . The Direct Product of the Second Kind

Representing rows of B by B, B, , -, Bn,—x’ we define the direct product -
of the second kind of 4 and B by
AR B,
ARQB,

A ®Bn|— 1 .
. where ) represents the ordinary direct product, We sometimes call it the direct
product of the first kind for distinction , Obviously, 4 (OB may be obtaind from
AX B by a row permutation,
ADB=P(ARB).
where P is a permutation matrix of order m,m, . Its elements are

AQB =

pijzd

i mod mocnij‘stz"—jj mod n,
¥ 0
where J,,=1 for k=], otherwise J,,=0, Let
P=iymy+i,

i, =i mod mOeZm0 (3)
) i
ll:[—m—O]eZm‘

Representing i/ by two digits i the ith row of 4B may then be represented

by

olys

(AQB), ;, =4 R B, (4)
Following theorems are concerinfng t(ile pr|operties of the direct product of the
second kind,
Theorem |
A+BYD (C+D)=ADC+BDC+ADD+BDD (5)
Proof
(A+B)D(C+D)=P((A+B)R (C+D))
=P[ARC+BEC+ARD + BRD)
=AQC+BDC+ADD+BDOD
Theorem 2
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ADBNDC=ADBNDC) (6)

Proof The difference between the direct produ’ct of :he second and the first

[

kinds is just on the ordering of the rows ., Therefore, we uzcd only to prove
that the /th rows of both sides are the same.
Suppose the numbers of row dimensions of 4, B, and < are m,, m,. and
m,, respectively ., On the left hand side of (6 )» the [ th row of 4 and i,th row
N of B generate the (i,my+i)th row o¢f AQDB. The (i ,m,+i ta row of A(Q)B and
the i,th row of C generatc i = (i,m my+i,m,+i,)th rtow of (AT)B)(DC . On the
other hand, on the right hand side of (6), the ith row of & aad the i,th row
of C generate the (i,m +/,)th row of BOC. The igh row o A4 and the M+
i i th row of B(DC generate the (i, +1)my+~i,=ith row or - ((BOC), The -
same rows of A4, B, and C generate the same row on buih :.cn of the cquation:
Therefore, the equation is valid..
This theorem allows us to represent the power of the. direct prd;iuct of the
second kind by ) )
A=A A;, A";):A‘”g“@A:A@A“'Q” . (7)

Theorem 3 The power of the direct product of the -s:cond kind of a
symmetric matrix is symmetric ,

Proof We use induction to prove this theorem, Lei 4 be a symmetric ma- ~
trix . A symmetric matrix must be square . Let the order of 4 be m. The ele-
ments of A2 are ..

a(2),,=a ‘ a i

i mod rp(—’jﬁ} [7,,-],1' mod m ,

On the other hand,
- . a(z),=a

. Ca
. jmodmt»;j;] E-,j?]imodm .
Since A is symmetrnic

az‘mpdm[%) :a[%]lmodm o " .
" Hence, a(2),=a(2),, and 4'*’is symmetric . Suppose A™ is symmetric . Write !
A"V = AN A, Tts element on' the ith row and jth column is given by

(N = ) ; :
ai Uu a(n)imodm"[#ja[i_')jmodm,

On the other harnd, write A(”?l’zA@A"?’. Tis element on the jtk row and ith
column is giver by ) :

aln+1), :a(n)jm‘)d”’(’;"n]a[%)imodm".
Since both A4 and A are symmetric,
ain)

. —a o
(-Llimodm™ “imodm"(-£)

ajm'm'"(-,;—,J - a[-i—nlimodm s
- Therefore, a(n+1),,=a(n+ 1}, .Thus 4”*" is symmetric, and the theorem is pro-

ven ,
Theorem 4
(AC)D) (BD) = (AD B (CRD) (8)
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Proof If P is a permutation matrix which contains precisely a single | in
each row and each column, and zeros elsewhere, one may easily to verify that
B (PA)B=P (AB) (9)
where A and B are two matrices with appropriate dimensions, Hence

(ADC)HBRD)=(P(ARC)I(BRKD) \
= P{(ARC)(BRD)) = PL(AC)® (BD)}= (AC){D(BD)

Since the direct product of the second kind is a permuted alternative of the
direct product of the first kind, and the orthogonality of a matrix does not chan-
ge by permutation, we have

Collolary | The direct product of the second kind of two orthogonal matri -
ces is orthogonal .

3. The Direct Product of the Third Kind

The direct product of the third kind of two matrices 4 (m,xn,) and B(m,xn,)
is defined as

ARB,
¢Q®&

T*4)® B,
A" ' DHRB, _,

(10>

AQB=

where T is the opposite diagonal unit matrix of order m. Its elements are zeros
except those along the diagonal from north-east to south -west where they are -
‘1's. B (keZ ) is the kth row of B, Obviously, AC)B is another permuted alter-
native of AXB . Represent i by two digits i,i,, and let

, iy for i, even
ig= {ﬂ_ . . (11)
ig=my—1-1, for i, odd

where 7, is the complement code of i, . Then the ith row of A()B can be gen—
erated by
(AQB), , =4,Q8B, ‘ (12)
Since the direct product otl‘ othe Othird kind is another permuted version of the
direct product, similar to the theorem 1,4 and the collolary ], we have
Theorem 5§ ’
(A+BYQC+D)=AQC+BQRC+AQD+BQD (13)
Theorem § :
(AC)Q (BD) = (AQB)(C®D) (14)
and
Collolary 2 The direct product of the tﬁird kind of two orthogonal matrices
is orthogonal , '
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- Now we shall show that the associative law holds for the direct product of
the third kind too.
Theorem 7 B
| AQB)QC=4QBQC) (15)

Proof Similar to the case for the direct product of the second kind, we
need only to show that the ith rows of both sides. are identical. Represent i by
three digits iji G, em,, k=0,1,2), where m,, m,, and m, are the numbers of row
dimension of A4, B, and C respectively , The ith row on the left of (15) is

[(A@B)@Clilei‘,]:(“@B)alio)'@Ciz .
When i, is even
(A@B)(ilio)' = (A@B)ilio =Ai;®Bil
- _ {Aio®Bi, for i, even
A?o®81, for i, odd.
When i, is odd
(AQDB) ;= (AQB) = (A@B)aﬂ:Ai—é@Bi—l
B A,—O(X)Bi_l for i, even
A’o®BI‘, for 7, odd .
On the other hand, the ith row of the right hand side of (15) is
(4Q B @C)]]izilio = Ai;@ (B@C)izi‘
where
., {io for i,i, even
) o= To=my—1-i, for i,i, odd,
However
B, ®C;  for i, even
B; ®C;  for i, odd
Representing two digits i,i, by i,m, +i,, one may judge that there are three cases
for i i, even; (1) Both i, and i, are even; (2) i, is odd, but both mand i,
are even; and (3) i, m and /, are all odd. However, the last two cases is
equivalent to say that both i, and i,=m,~1-i, are odd.

BQO),,;, =B;RC, =

There are three cases for i,i, odd: (1) i, is even, but i is odd; (2) Both
i, and m are odd, but i, is even; and (3) Both i, and i, are odd, but m, is
even, However, the last two cases is equivalent to say that i, is odd, but lTl
is even , '

From the above arguements one may see that in all cases the ith rows of

- both sides of equation (15) are generated by the same rows of A4, B, and C, The-

refore the equation is valid .

This theorem allows us to represent the power of the direct product of the .
third kind by '
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A‘%’:_A@A; ADZ 4TV A= AQ 4D (16)

Now we shall show a nice property of the sign changes of the direct pro-
duct of the third kind., We call the number of sign changes within the ith row
of a matrix A the sequency of that row, and represent it by u(Ay, or u, . If
#,,,>u, holds for any i, we say that the matrix is sequency ordered, For a
mXm square matrix, the maximal sequency is m-1, If it is sequency ordered, one
must have u, =i, (ieZm) .

Theorem g If A contains no null element, and both A (myxm,) and B(m, x
m,) are sequency ordered, then A B is sequency ordered .

Proof Let us consider x,, the sequency of the ith row of AQ)B. Represen -
ting / by two digits i,i,, we discuss the problem in two cases .

(1) i, is even. As is shown by (10), (11), and (12), (A@B)ili‘):Aio(X)B,-l_
Since i, is even, the signs of the first and the last elements of B, is identical.
Since A4 contains no null element, each element of 4 will makely(B)i sign .
changes for 4, B, . The total sign changes in A4; ¥ B; are the sign chanlges made
by m eif‘.mentso of ,:1,.0 plus the sign changes of Ainoitsellf. Hence,

”z:"ilioI”(B)i,mo+/‘(A)i0:i1mo+io:i

(24, is odd. From (10) thru (12), (A(DB),-‘,-“zA;o(X)BI.l , where 7 is given
by (11’ . Since i, is odd, the sign of the last element of B,-| is opposite to that
of the ‘irst element. Each element of A4; shall make ux(B); +1 sign changes if .
the next! clement of A,.-o is of the same s;gn as the first onle, or only make ;4(8),.l
sign changes if the next element of AI.—o-is of the opposite sign to the first one.
The last element of A,.—0 will only make ”(B)". sign changes , The total sign chan-
ges will be u,= i :[”(B)", + 1]m0—u(A)70~ 1=+ 1)m0—i_0—1 =i,my+i =i Hen-
nce, y, =i holds for both cases. Therefore, AQB is sequency ordered .

4 . Applications

L.et A be an orthogonal matrix of order m, and A4" =ml . T represents the
transposition. I is the identity matrix. We define m step functions on [¢,1) as
p,(x)=a, i/m<x<(j+1)/m  jeZ, sieZ

wiere ¢, are elements of 4, Since
1 m-|
fo‘pi(x)¢k(x)dx = Z a,8,;= 5,-1‘,
j=0

we see that {@,(x)} (ieZ ) is an orthogonal basis in R™. {p,(x)} will be referred
.5 25 the orthogonal function set associated with 4; or inversely, we say that A4
- asscciated with {g,(x)}. The main appiication of the direct product of the
~econd and third kinds is to generate orthogonal matrices of higher order from

that of lower order. Since every orthogonal matrix is associated with a set of -
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step orthogonal functions, the direct products of the second and third kinds are
applicable to the generation of step orthogonal function sets, Following are some
examples ,
(1) Let
H=C( i i]; G = (e mki/py | szte—znk,l_, Y, |
where i=/-1 k,leVZp; k,,1,€Z, 5 j=0,1,*. The orthogonal function set asso -
ciated with w=1limH ® is the function system defined by Walsh [2], and that as-

n-—»oo

sociated with P =1limH™ is the function system defined by Paley [3]. The set

n+ol

of functions associated with CH =1imG®™ is the function system defined by Chre-

n-—»oo

stenson [ 4 J. The set of functions associated with WR=G, DG, OG,+, is the fun-
ction system defined by Watari [ 5 ]. v

(2) Let 4, , A , -, be orthogonal matrices of orders m,, m , -, respectively .

1 Ll
The elements on the first rows of these matrices are all ones, The functions asso-

v

k-
" ciated with A, are -represented by (pk,,.k(x), i,‘eZ,,,‘k . Let pk:l_Im,. , and represent
i=0

a natural number n by

Ry Puy Vi gPy g toee iy py+iy i 62,
We define the generalized Walsh function

UoulX) =@ Oy (X)eeg ; (X))@ ; (X)

Following Watari [ 5], one may prove that y,(x) is a complete orthogonal func-
tion system on L (9,1) which is associated with A0®A1@‘"- The Watari system
is a special case of this system - A sequency ordered alternative of this system
may be readily obtained by using the direct product of the third kind if all 4,
are sequency ordered and contain no null element .

5. Generalization of Direct Product to the Continuous Functions

Let A(myxn) be a matrix. g, , is its element on the ith row and jth column.
Let f(x) be a function defined on {0,1). The following m, functions on [0,1)
o (x)=a, f(nx=j)s j/n<x<(G+1)/n, jeZ,,ieZ, a7
are defined as the direct product of 4 and f(x), and will be represenied by
{p) =AQRQ f. Let {f}:={f(x), A(x),---, fm‘,l(x)} be a set of m, functions. Let
i,i,, and i, be given by (1), then the following m m, functions
@,(x) =a,-0jj§] (nx—j), j/n<x(j+1)/n, JjeZ,, ieZmoml - (18)
are definet as the direct product of 4 and {f}, and will be represenied by ig:
=ARQ{f}. If i, i,i, and ij are given by (3) and (11), then the m m, functions
given by (18) are defined as the dijrect product of the second kind of 4 and [f!.
and will be represented by ‘¢! =4()! . On the other hand. the following
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my,m, functions :

¥,(x) =a,-(;jj;l(nx -J), J/n<x(+1n, jeZ,; i(Z."'o'". 19
are defined as the direct product of the third kind of 4 and {f},and will be represen -
ted by {¢)=AQ (). Obviously, AR (f}, AD(f}, and AQ {f} define the same
set of functions, but in different orderings , However, if {f} is a set containing
infinite number of functions, A® {f) loses its meaning . But AQD{Sf} and AQ{f}
still have meaning, They represent the same set of infinite number of functions
with different ordering.

Functions generated by direct product possess piecewise property. At a point
of discontinuity, let the function be continuous to the right., Following theorems
are concerning the generation of sets of orthogonal functions .

Theorem 9 If A is a orthogonal matrix of 'order m AA"=ml, and f(x) is a

function on [¢,1) such that J'Olf(x)zdx =1, Then AR f(x) is a set of m orthogo -

nal functions .
Proof According to the definition, A f(x) defines a set of m functions.
From (17),

1 m-1 (J+1)/m
[000,0)dx =" a,a, [ =" mx - j)ax
j=0 J/m

=7n1—’:§ 9% Iolf(y)zdy =0y
The proof is completed |
Theorem |g If A4 is an orthegonal matrix of order m, AA"=mI, and {f) is
a set of p orthogonal functions on [, 1], then A®{f},A@{d}, and AQ {f}
are sets of mp orthozonal functions on [(,1).
Proof Since three kinds of direct product define the same set of functions, we
need only to prove this theorem for one case. Acéording to (3) and (18),

J‘(j+l)/m

1 m-1
fow,(x)m(x)dx: 3 g % N S, (mx - j)f, (mx - j)dx
j=g ¢ T 'm 1 1

_ 1 !
= 2, i Uil i, 0,

Since {f} is a set of orthogonal functions, folfil ) f, (»)dy =4, , . On the other
m-y ,
hand, since AAT:mI’“.,e have -;i__,go aiojakoj :6ioko' Therefore
. 1 =k, and i =k
(@ dx =4 , 6, =3 o C
IO‘P,( )@, )’x 1.k, 71k, 0 otherwise

However, the condition i =k, and i =k, is equivalent to that i =k, Thus the

theorem is proven .
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Let W be the Walsh matrix of order N=2%([61), {4}:={ke,A;,,4,} =/2k+ 1 P, (x),
P.(x) is the kth Legendre polynomial defmed on [0,1). Then W®{A} is the set
of piecewise orthogonal polynomials defined by Qi and Feng(2?7,

Theorem || If A4is an orthogonal matrix, A4” =ml, and {f} is a complete set
of orthogonal functions on [0,1)," then AD{f} and AQ{f) are complete sets of
orthogonal functions on [(,1). - .

Proof We need only to prove this theorem for one case., the ortho -
gonality of A {f} may be proven by the same procedure as the last theorem,
and will be omitted here, We will prove the completeness of A@{f} only .,

Suppose g(x)x0,and g(x) is orthogonal to all functions of {¢}=AD{f}. In

other words, flg(x)wl(x)dx= 0 for any i. Representing i by (3), we obtain
0

J-(]'*l)/”'

f g(x)p(x)dx = E %, g(x)f,{(mx—j)dx

m-1 . .
=%,ZO a,; ] &2l mdy =0

. .
Let bi.j:.fog( y;])f,.l(y)dy, jeZ,, we get

Zlao, 0=0. , S

i=0

Since m rows of A can be viewed as a complete orthogonal basis on R", (20)
shows that the project of the vector b, Ebi o b bim_ljr on any axis of R™’
1 t
is 0. Therefore, we must have

b; ;= folg( y;l) f,»dy=o.

The completeness of {f} ensures that g(x)=(. The theorem is thus proven .

The above theorems show that the direct product can be used to generate
sets of orthogonal functions with higher number of dimensions from that with
lower number of dimensions, or genérate new complete sets of orthogonal func-
tions from known complete sets of orthogonal functions, The functions so gen-
erated possess piecewise property . The sets of orthogonal functions so generated
are sets of piecewise orthogonal functions . Followihg the proof of the theorem 8§,
reader will have no difficulty to prove the following theorem .

Theorem |2 If A is a sequency ordered matrix containing no null. ele-
ment, and if {f} is a sequency ordered set of functions* 4D {f} is a scqueuey
ordered set of functjons ,

Most known sets of orthogonal functions on [(,1), such as the Legendre
polynomials, the Walsh functions, {cosmnx}, {sin(m+1)xx}, {cos(m +—;—)7rx},
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{sin (n +»%-)nx}, etc, are sequency ordered ., The sequency crdering seems to be
a naturaj way of ordering functions in a set of orthogonal functions, For this
reason, the direct product of the third kind ismere attractive when one genera-
tes sets of orthogonal funciions by direct product.
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