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Many problems in practice (e.g.in the simplex method for solving LP)
require computing an inverse of a nonsingular matrix. We always expect the
calculated results to be as accurate as possible. How do yuo know the accuracy -

of the results? The estimate schemes now available give only an error on upper

- bounds that are usually amplified. This paper shows two useful theorems By
means of them we can determine the accuracy of a calculate inverse matrix .
We consider the matrix equation
' AX =B (1)
for the unknow matrix X, where A4 is a nonsingular nxn matrix, B any nXn
matrix.
To begin with, assume that all the elements of 4 and B are machine num-
ber (i.e.,they can be exactly reprented in machine without any error) .
Lemma |. Let X* be the exact solution, X a numerical solution of system
(1). If a nonsingular nXx n matrix U satisfies the inequality
l1-val <, (2)
- then |UR| [VR]
e 1-oa] ~ 1PX ST oAl 8

where dX=X - X*, R=B- AX.
Proof. Because R=B- AX'= AX*— AX = A5X, 6X= - (UA)'UR=(I-1-UA'UR,
Aoording to Banach lemma (see (1)), it follows that
la-1-vat|<i/a-1-v4al.

Therefor
‘ lox|<|UR)/Q~|1-U4]. (4)
From
lval = 1-1-va|<i1+|1-U4],
and

IUR| = |U4sx |<|U4|]sx]
we immediately obtain
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lox|>|UR|/ VAl >|UR|/ 1+ 1-UA]) (5)
combiring (4) with (5), the proof is complete.

It should be pointed that the inequality ( 3 ) holds also when B is an nxn
matrix in system (1), provided that we use consistent matrix norms.

In particular, for B=1, an numerical solution X of system (1) is also an
approximation of 4'. If inequality ( 2) holds for U=X, we can take it as U.
From this, we give the follow theorem.

Theorem | Let nxn matrix 4 be nonsingular and let X be a numerical
solution of matrix equation AX=1 (i.e., X is an approximate inverse of 4 ').If
the matrix X is nonsingular and satisfies |I- XA| <1, then

| XR| | XR|
1+ |F| 1- 17l
| XR| _Ix-4") IXR]
G IFDIXT ™ 4x1 - G-IFDIx|
where R:I—Af, F=I-XA.

From (6 ), (7) it is seen that the error bounds of the matrix X with res-
pect to A' would be amplified 10 at most when F<0.9, and 1/0.9 at most when
F<0.1. Thus estimate (7 ) can indicate the number of significant digits of the

<Jx-4'l< (6

(7)

elements of the matrix X in respect of A4 '.
Now assume that the elements of A or B are not machine numbers. We
have the following Lemma .
Lemma 2 Let 4 and B be input data of 4 and B respectively, and let A4
be nonsingular. Suppose X* is the exact solution of matrix equation AX = B, X
an numerical solution of AX=B. Let R=B- AX, F=1- XA, and let X=X - X",
suchthat |sX1I< r| X" | With 0<.r< 1.If anonsingular nxn matrix U satisfies UA -
I |< 1 then
rulca+o A xXI+1BP+ivRj
1-|F]

lUR]
1+ |F |
here n is machine precision.

Proof. We show at only the right side of (8). Let X"* be the eact solu
tion of the equation AX = B. Let 4= A- A, 6B=B-B, and satisfy a4« niAl,
[oBi<:n {B|. in which 6zgX=X-X", 6,X=X"- X". Therefor

loxk<lo, x|+ loeX]| | €9)
On the other hand, e
AX"- AX*=5B-0AX" = - 45X,
UAS , X =U(5AX" —6B)
S,X=(UA 'U(SAX" - 6B)
lopX | <nal cvD MU | fall x*) +1BD (10

(8)

<lsx|<
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- Similarly . We have
I8, X I<ll VA" [jUR] ()
From (9)—(11), we obtain (8 ) by using Banach lemma.
Note That estimate ( 8 ) is suitable for rectangular matrix under consistant
matrix norms. Bspecially, in the case of B=1I, 6B vanishes. The following
theorem is analogous to theorem 1.
Theorem 2 Let input matrix 4 of matrix A be nonsingular and let X be
. approximate inverrse of 4.If X is nonsingular and satisfies the conditions:
1. |[X-A1<r|X| with 0<r<1
2. [ I-X4|<1.

then
IXR ~ g n+n | XN A0+ | XR N
- AT SIS £ T A
IXR| IX- a4 _ na+lXC14 ]+ | XR] s
QA FDIXT S 1%1 ~ a-IFDIXI e
where R=I1-AX, F=I- XA, n is the machine precision.
In general, the solutions of a matrix equation are affected by roundoff
erroes much more than by input errors. So in examining the -accuracy of calcu-
late results, the inequality (3), (6) and (7) can replace (8), (12) and (13),
respectively .
Example. Given
A= [0. 20000000 0.40000000]
0.20000000 0.40000010
—_ we find easily
4 [0.20000005 —0.20000000] s .
Al = x 10
-~ 0.10000000 0.10000000
if .
~ [0.20000006 —0.20000000
‘ B [— 0.10000000 0.10000000]
then
. |X- 4"l /14" ~0.25x107 |
Thus X should have seven number of significant digits in respectt of At
However, according to the estimate used usually
AX AN i azy,
~ ha™|
we obtain
Nx-4), f’,ﬂ e g
ha™1.,
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from
~ -0.2
I~AX:[ 0.2 0 ]
-0.2 0
This implies X could not have any significant digit.

. -0.2 0.4 -1.2 0
Now we use inequality (7 ). Since F:]: 0 0 :]and XR=[ 0 O:] .
|%- 4"
1x1

This determines precisely that X has seven significant digits.

0.18x 10 < <0.75% 107
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