Journal of Mathematical Research and Exposition Vol.9, No.4, Nov., 1989.

On Generalized A-Groups*

Wang Ruji *

(Normal Branch of Beijing Teachers College)

P. Hall defined the concept of A-groups in [1] as follows.

Definition 1. A finite solvable group is an A-group if all of its Sylow subgroups are abelian.

P. Hall mentioned the following theorems without proofs.

Theorem A. Let G be an A-group. Then $G' \cap Z(G) = 1$.

Theorem B. Let G be an A-group and let N be the system normalizer of G. Then G = G'N and $G' \cap N = 1$.

D.R. Taunt proved these theorems in [2]. D.R. Taunt, B. Huppert and R. W. Carter studied the structure theory of A-groups (See [2], [3] and [4]).

In this paper we define the concept of so-called "generalized A-group", which are weaker than that of A-groups, and generalize the properties of A-groups to the generalized A-groups.

Definition 2. A finite solvable group G is called GA-group, i.e., generalized A-group if derived group of every Sylow subgroup of G is contained in the centre of G.

Obviously, an A-group is a GA-group but the converse is not true.

Throughout this paper, let p_1, p_2, \dots, p_r be all of the distinct prime divisors of order of G and let P_1, P_2, \dots, P_r be Sylow subgroups corresponding to the prime divisors. Suppose that G is a GA-group, by definition 2, then $P_1'P_2'\cdots P_r'=P_1'\times P_2'\times \cdots \times P_r' \leqslant Z(G)$.

Proposition 1. Let G be a GA-group and $P_1' \times P_2' \times \cdots \times P_r' \leqslant H \triangleq G$, then G/H is an A-group. Conversely, let G/H be an A-group and $H \leqslant Z(G)$, then G is a GA-group and $P_1' \times P_2' \times \cdots \times P_r' \leqslant H$. Thus, in fact, a GA-group is a central extension of an abelian group by an A-group.

Proof. Suppose that G is a GA-group and $P_1' \times P_2' \times \cdots \times P_r' \leqslant H \triangle G$. Then the Sylow subgroups of G/H are $P_iH/H(i=1,2,\cdots,r)$. Since $(xH,yH)=(x,y)H \in P_i'H$ = H for x,y in $P_i,P_iH/H$ is abelian. So G/H is an A-group. Conversely, suppose that G/H is an A-group and $H \leqslant Z(G)$. Then for a Sylow subgroup P of G, by

^{*} Received Sep.2, 1987

G/H being an A group and PH/H being a Sylow subgroup of G/H, PH/H is abelian. Thus, (P, P)H/H = (PH/H, PH/H) = 1. This shows that $P' \le H \le Z(G)$. So G is a GA group and $P_1' \times P_2' \times \cdots \times P_s' \le H$.

Proposition 2. All subgroups and all quotient groups of a GA group are also GA groups.

Proof Suppose that G is a GA group and $H \leqslant G$. If S is a Sylow p-subgroup of H, then there exists a Sylow p-Subgroup P of G such that $S \leqslant P$. Hence $S' \leqslant P' \leqslant Z(G)$. Thus, $S' \leqslant Z(H)$. So H is a GA group. Suppose that $N \subseteq G$. Then every Sylow p subgroup of G N is of form PNN, where P is some Sylow p subgroup of G. Since $(xN, yN) = (x, y)N \in Z(G)N \cdot N \leqslant Z(G/N)$ for x, y in P, $(PN/N) \leqslant Z(G/N)$. Therefore, G/N is a GA group.

Proposition 3. Let G be a nilpotent group. Then G is a GA group if and only if the nilpotent class of G is at most 2, i.e., $c(G) \le 2$.

Proof. This follows immediately from $G' = P' + P'_2 \times \cdots \times P'_r$ and the nilpotency of G. Corollary 4. The system normalizer of G a GA group is a nilpotent group whose nilpotent class is at most 2.

We know that if G is an A-group, then $Z_{\infty}(G) = Z_{\beta}(G)$, where $Z_{\infty}(G)$ is the hypercentre of G(See [2]). In general, we have only the following.

Proposition 5. Let G be a GA group, then the upper central series of G terminates in $Z_1(G)$ or $Z_2(G)$, that is, $Z_{\infty}(G) = Z_2(G)$.

Proof. By the definition of GA group, $P_1' \times P_2 \times \cdots \times P_r' \le Z(G)$. Then G/Z(G) is an A group by proposition 1. Thus, $Z_{\infty}(G)/Z_1(G) = Z_{\infty}(G/Z_1(G)) = Z_1(G/Z_1(G)) = Z_2(G)/Z_1(G)$, so $Z_{\infty}(G) = Z_2(G)$.

Let $G = y_0(G) \ge y_1(G) \ge y_2(G)$...be the lower central series of G, where $y_i(G) = \{y_{i-1}(G), G\}$ $(i = 1, 2, \cdots)$ and $y_{\infty}(G)$ is the nilpotent residual of G. It is easy to check that $y_i(G/K) = y_i(G)K/K$ $(i = 0, 1, \cdots)$ by induction, and further $y_{\infty}(G/K) = y_{\infty}(G)K/K$. We know that $G' = y_{\infty}(G)$, i.e., $y_{\infty}(G) = y_i(G)$ for A-group G(See [2]). Generally, we know only the following.

Proposition 6. Let G be a GA group. Then $G' = y_{12}(G)D$, where $D = P_1' \times P_2' \times \cdots \times P_r'$.

Proof By proposition 1, G/D is an A group. Then, since $D \le G'$ and G'/D. $(G'/D)' = y_{\infty}(G/D) = y_{\infty}(G)D/D$, $G' = y_{\infty}(G)D$.

Proposition 7 Let G be a GA group. Then the lower central series of G terminates in $y_1(G)$ or $y_2(G)$, that is, $y_{\infty}(G) = y_2(G)$.

Proof Since $G/y_{\infty}(G)$ is nilpotent, by proposition 2 and 3, the nilpotent class $c(G/y_{\infty}(G)) \leq 2$. Thus $y_{\gamma}(G)/y_{\infty}(G) = y_{\gamma}(G/y_{\infty}(G)) = 1$, so $y_{\infty}(G) = y_{\gamma}(G)$.

We shall study the most important properties of GA groups.

Theorem 8. Let G be a GA group and P a Sylow p subgroup of G, Then

 $P \cap G' \cap Z(G) = P'$.

Proof Since G is a GA-group, $P' \leq Z(G)$, so that $P' \leq P \cap G' \cap Z(G)$. And by transfer theory, $P \cap G' \cap Z(G) \leq P'$ (For example, see [4]). So $P \cap G' \cap Z(G) = P'$.

Obviously, when G is an A-group, theorem 8 implies theorem A. It is easy to show that $G' \cap Z(G) = 1$ is not generally true for a GA-group G. However, we know that $p_{\infty}(G) = G'$ for an A-group G and $p_{\infty}(G) < G'$ for an arbitrary group G. These facts make the conjecture whetenr $p_{\infty}(G) \cap Z(G) = 1$ for a GA-group? In fact, the following so-called "special critical group" shows that the conjecture is not true. But we can prove that $p_{\infty}(G) \cap Z(G) = 1$ for a special-critical-group-free GA-group G, that is, the following theorem 10.

Definition 3. A group G is said to be special critical if it satisfies the following conditions:

- (a) G has a normal extraspecial p-subgroup P for some prime p (that is, $Z(P) = P' = \phi(P)$ and |Z(P)| = p;
- (b) There exists a cyclic group Q of prime order q such that G = PG, where the prime $q \neq p$;
- (c) [P', Q] = 1, and when Q acts on P by conjugate, the induced action of Q on P/P' is fixed-point-free, and every Q-invariant proper subgroup in P is abelian. (For the extraspecial p-group and critical group, see, for example, III, 13.7 and IX, 2.1 in [4]).

Remark. The special critical groups are separated into tow classes. When the action of Q on P/P' is irreducible, G is said to be a I-group. Obviously, for I-group G, the Q-invariant proper subgroups in P are only P' and 1. When the action of Q on P/P' is reducible, G is said to be II-group. For a II-group, by Maschke's theorem, $P/P' = H_1/P' \times \cdots \times H_s/P'$, where H_1/P' $(i=1,2,\cdots,s)$ are all irreducible Q-invariant proper subgroup of P/P' and s > 2. We assert that s = 2. Otherwise, whenever $i \neq j$, H_1H_j must be a Q-invariant proper subgroup of P, hence by (c), H_1H_j is abelian. However $P = H_1H_2\cdots H_s$ and is not abelian, a contradiction.

Proposition 9. Let G be a special critical group. Then (1) G is a GA-group; (2) $Z(G) = Z(P) = P' = \Phi(P)$; (3) [P, Q] = P and $\gamma_{\infty}(G) = G' = P$, hence $\gamma_{\infty}(G) \cap Z(G) = Z(G) \neq 1$. (4) For every proper section L/K of G, $\gamma_{\infty}(L/K) \cap Z(L/K) = 1$; (5) When p > 2, exp P = p; when p = 2, exp P = 4. **Proof.** (1) Obviously.

(2) Write $Q = \langle b \rangle$, then every element of G is of form xb^i , where $x \in P$. Suppose that $xb^i \in Z(G)$. Then $b^{-1}(xb^i)b = xb^i$, hence $b^{-1}xb = x$. It follows that $x \in P'$ from the action of Q on P/P' being fixed-point-free and $Q = \langle b \rangle$. Take $y \in P$ and $y \notin P'$. Since $y(xb^i) = (xb^i)y$, by $x \in P'$ as proved above and P' = Z(P), it follows that $b^{-i}yb^i = y$. Again by fixed-point-free action and $y \notin P'$, it follows that $b^i = 1$. These arguments show that $Z(G) \leq P' = Z(P)$. Finally, by (a) and (c), we have also $Z(P) \leq Z(G)$. Therefore $Z(G) = Z(P) = P' = \Phi(P)$.

- (3) Consider the action of Q on P. By (c), $P' < C_p(Q)$. Conversely, if $x \in C_p(Q)$, then $b^{-1}xb = x$. However, by the action of Q on P/P' being fixed point-free and $Q = \langle b \rangle$, it follows that $x \in P'$. Thus, $C_p(Q) = P'$. So by the theory of action of π' -groups on π -groups, it follows that $P = C_p(Q)(P, Q) = P'(P, Q) = (P, Q)$, since P' consists of non-generators of P. Thus, since P = G and Q is a cyclic group, P = (P, Q) < (G, G) = (PQ, PQ) < P, hence G' = P. Also P = (P, Q) < (P, G) < P, hence (P, G) = P. Thus $p_{\infty}(G) = p_{2}(G) = (G', G) = (P, G) = P$.
- (4.1) The case where G is a I-group. First, suppose that L is a proper subgroup of G. If L is a p-subgroup or a g-subgroup, then, obviously, $\gamma_{\infty}(L/K)$ = 1 for any quotient group L/K of L, hence $\gamma_{\infty}(L/K)\cap Z(L/K)=1$. Therefore, we need only to consider $pq\mid L|$. Now L=HQ where H is a Sylow p-subgroup of L, and Q is also Sylow q-subrroup of L. Since $P \triangle G$, $H \triangle L$. So H is a Q-invariant proper subgroup of P. By (c), H must be abelian. Therefore, L is an A-group. Thus, since quotient groups of an A-group are A-groups, by theorem A, it follows that $\gamma_{\infty}(L/K)\cap Z(L/K)=(L/K)'\cap Z(L/K)=1$ for any quotient group L/K of L.

Second, suppose that L=G and $1 \neq K_G$. If $q \mid |K|$, then G/K is a p-group, hence, $\gamma_{\infty}(G/K) \cap Z(G/K) = 1$. So we assume that $K \leq P$. Now, since KP'/P' is Q-invariant and the action of Q on P/P' is irreducible, KP'/P' = P/P' or 1, hence P = KP' = K or K = P' (by |P| = p). If K = P, then G/K = Q, so that $\gamma_{\infty}(G/K) \cap Z(G/K) = 1$ obviously; If K = P', then G/K = G/P', which is an A-group by proposition 1 (Note Q' = 1), hence also $\gamma_{\infty}(G/K) \cap Z(G/K) = 1$.

(4.2) The case where G is []-group. First, let L and H be the same as (4.1). Since H is a Q-invariant proper subgroup of P, by (c), H is abelian. So L = HQ is an A-group. Then, we immediately obtain the requared result for any quotient group of L.

Scond, suppose that L=G and $1 \neq K \triangle G$. By a similar to (4.1), we can assume that $K \triangleleft P$, further $P' \neq K \neq P$. Obviously $P' \triangleleft KP' \triangleleft P$ and $KP' \triangle G$, hence, KP'/P' is a Q-invariant proper subgroup of P/P'. By Maschke's theorem, $P/P' = KP'/P' \times M/P'$, where both KP'/P' and M/P' are Q-invariant proper subgroup of P/P'. By (c), K and M must be abelian. Then, since P = KP'M = KM and P is not abelian, $\{K, M\} \neq 1$. Thus, using $\{K, M\} \triangleleft P'$ and |P'| = p, we have that $\{K, M\} = P'$. By $K \triangle G$, $\{K, M\} \triangleleft K$, hence $P' \triangleleft K$. Therfore, since G/P' is an Agroup and G/K = G/P'/K/P', G/K is also an Agroup. So $y_\infty(G/K) \cap Z(G/K) = 1$.

(5) If $p \neq 2$, then, by $\exp P' = p$, P is a p-abelian p-group. Since $\Phi(P) = p$

Z(P) = P' = Z(G), it follows that if $x \in P$ and $a \in Q$, then $x^p \in Z(G)$ and hence $[x, a]^p = (x^{-1}x^a)^p = x^{-p}(x^a)^p = [x^p, a] = 1$. Also, by (3) proved above, P = [P, Q]. Therefore, $P = \langle [x, a] | x \in P, a \in Q \rangle \langle Q_1(P) = \tilde{\Lambda}_1(P) \langle P | \text{since } P \text{ is } P \text{-abelian } P \text{-group, where } Q_1(P) = \langle x \in P | x^p = 1 \rangle$ and $\Lambda_1(P) = \{x \in P | x^p = 1\}$. So $P = \Lambda_1(P)$, that is, $\exp P = p$. If p = 2, then, since P is non-abelian, $\exp P = 4$.

The following is the most inportant property of GA-group, which is the main result of this paper.

Theorem 10. Let G be a GA-group and special-critical-group-free, that is, every section of G is not isomorphic to any special critical group. Then $p_{\infty}(G) \cap Z(G) = 1$.

Proof. We argue by induction on |G|. Let GA-group G be a counterexample to the assertion with least possible order. Through the following stepts, finally, we shall reach a contradiction, hence complete the proof.

(1) "Write $K = \gamma_{\infty}(G) \cap Z(G)$. Then K must be the unique minimal normal subgroup of G and of prime order p". Note that the following p, throughout the proof, refers to the prime

Obviously, $K \neq 1$ since G is a counterexample. Let $1 \neq H \triangle G$. By proposition 4, G/H is also GA-group. Since G/H is also special-critical-group-free and |G/H| < |G|, $KH/H < y_{\infty}(G)H/H \cap Z(G)H/H < y_{\infty}(G/H) \cap Z(G/H) = 1$. Thus, KH = H, hence K < H. So K is the unique normal subgroup of G. Choose arbitrarily an element a of prime order p of K. Now since $\langle a \rangle < K < Z(G)$, $\langle a \rangle \triangle G$. So $K = \langle a \rangle$ by the minimality of K.

(2) "If H is a nontrivial normal proper subgroup of G, then H must be a p-group".

Suppose that $y_{\infty}(H) \neq 1$. Since $y_{\infty}(H)$ char H = G, $y_{\infty}(H) \triangleq G$. Then, by (1) proved just, $K \leq y_{\infty}(H)$. Also, by $K \leq H$ and $K \leq Z(G)$, $K \leq Z(H)$. So $K \leq y_{\infty}(H) \cap Z(H)$. But, since H is also special-critical-group-free and $|H| \leq |G|$, $y_{\infty}(H) \cap Z(H) = 1$, a contradiction. Therefore, $y_{\infty}(H) = 1$, hence H must be nilpotent. Now suppose that S is a Sylow subgroup of H. Since S char $H \triangleq G$, $S \triangleq G$. By (1), $K \leq S$. So H must be a p-group.

(3) "G' must be the Sylow p-subgroup of G". White G' = P, hence $P \le G$.

Since, obsiously, G is nonabelian, $G' \neq 1$. By (2) proved just, G' is a p-group. Thus, $G' \leq P$, where P is a Sylow p-subgroup of G. Obviously, G is not a p-group. Thus, if $G' \neq P$, then G/G' would have the nontrivial proper normal p-complement H/G. Hence H would be a proper normal subgroup of G and not a p-group, a contradiction to the above (2). Therefore, G' = P.

(4) "The p-complement Q of G must be a cyclic group of prime order q". Hence G = PQ and $Q = \langle b \rangle$.

By (3), G = G'Q and $G' \cap Q = 1$, hence $Q \cong G/G'$ is abelian. Let H/G' be a pro-

11

per subgroup of G/G'. Then H is a proper normal subgroup of G. By (2), H must be a p-group. So $H \le P = G'$, hence H/G' = 1. This shows that G/G' (hence Q) is an abelian simple group. Therefore Q is a cyclic group of prime obder Q, where $Q \ne P$.

 $(5) "y_{\infty}(G) = P".$

Since G is a GA-group, by proposition 6 and (3) and (4), it follows that $P = G' = \gamma_m(G)P' = \gamma_m(G)$.

(6) "Z(G) = P' = K, in particular, |Z(G)| = p".

Obviously, $Z(G) \neq 1$. By (2), Z(G) is a p-group, hence $Z(G) \leq P$. Thus, by (5), $Z(G) = Z(G) \cap P = Z(G) \cap \gamma_{\infty}(G) = K$. And by theorem 8 and (3), also $P' = P \cap G' \cap Z(G) = Z(G)$.

(7) "Z(P) is a cyclic group".

Suppose the assertion to be false. $\Omega_1(Z(P)) = \langle x \in Z(P) | x'' = 1 \rangle$ would be an element abelian group of order p' and r > 1. Since $\Omega_1(Z(P))$ char Z(P) char $P \triangle G$, $\Omega_1(Z(P)) \triangleleft G$. By (1), $K \triangleleft \Omega_1(Z(P))$. Hence $\Omega_1(Z(P)) = K \times J$. In particular $J \neq 1$ since |K| = p and r > 1. Consider the action of Q on $\Omega_1(Z(P))$ by the conjugate. Since $K \triangleleft Z(G)$, K is a Q-invariant subgroup. By Maschke's theorem, $\Omega_1(Z(P)) = K \times J_1$, where J_1 is also a Q-invariant subgroup. Hence, since $J_1 \triangleleft \Omega_1(Z(P)) \triangleleft Z(P)$, J_1 is invariant under the action of P by the conjugate. Then, by (1) and (2), $K \triangleleft J_1$, a contradiction. Therefore r = 1, i.e., Z(P) must be a cyclic group.

 $(8) \, ^{\mu}Z(P) = P'^{n}$.

By (7), we may write $Z(P) = \langle x \rangle$, where x is of order p^n . By the property of p-groups, n > 1. The case: n = 1. Since Z(P) char P < G, Z(P) < G. Then by (1), K < Z(P). Thus Z(P) = K by the orders. So Z(P) = P' by (6). The case: n > 1. Now, $1 \neq \Omega_1(Z(P)) < G$. Since (1), $K < \Omega_1(Z(P)) < Z(P)$, in particular, $K = \langle x^{p^{n-1}} \rangle$. Since Z(P) char P < G, Z(P) < G. Thus, $b^{-1}xb = x^{\lambda}$. However, since $b^q = 1$, $\lambda^q \equiv 1 \pmod{p^n}$ by $x = b^{-q}xb^q = x^{\lambda^q}$, hence $(\lambda - 1)(\lambda^{q-1} + \cdots + \lambda + 1) \equiv 0 \pmod{p^n}$. By (6), K = Z(G), hence $x^{p^{n-1}} \in Z(G)$. Thus $x^{p^{n-1}} = b^{-1}x^{p^{n-1}}b = x^{\lambda p^{n-1}}$. This shows that $p^{n-1}(\lambda - 1) \equiv 0 \pmod{p^n}$, hence $\lambda \equiv 1 \pmod{p}$. Further, it follows that λ , λ^2 , \cdots , $\lambda^{q-1} = 1 \pmod{p}$, so that $\lambda^{q-1} + \cdots + \lambda + 1 \equiv q \not\equiv 0 \pmod{p}$ Therefore, $\lambda \equiv 1 \pmod{p^n}$. Hence $b^{-1}xb = x$. Since G = PQ, $Z(P) = \langle x \rangle < Z(G)$. By (6) and the orders, we reach a contradiction. So it follows that n > 1 is impossible.

(9) "P is an extraspecial p-group, that is, $Z(P) = P' = \Phi(P)$ and |Z(P)| = p". If x and y are in P, by (8), $x^{-1}y^{-1}xy = z \in P' = Z(P)$ and $z^p = 1$. Thus, it is easy to verify that $y^{-p}xy^p = xz^p = x$. This shows that $y^p \in Z(P)$. Hence $\mathcal{O}_1(P) = \langle y^p | y \in P \rangle \ll Z(P)$. Thus $P' \ll \Phi(P) = P' \mathcal{O}_1(P) \ll P' Z(P) = P'$, hence $\Phi(P) = P'$. It follows that $Z(P) = P' = \Phi(P)$ and |Z(P)| = p from (6), (8).

(10) " $C_{P}(Q) = P'$ ".

Since Sylow subgroups $\overline{P} = P/P'$ and $\overline{Q} = QP'/P'$ of $\overline{G} = G/P'$ determine a Sylow basis of \overline{G} , $\overline{N} = N_{\overline{G}}(\overline{P}) \cap N_{\overline{G}}(\overline{Q}) = \overline{G} \cap N_{\overline{G}}(\overline{Q}) = N_{\overline{G}}(\overline{Q})$ is a system normalizer of \overline{G} . Then, since \overline{G} is an A-group, \overline{N} is a complement to \overline{G}' in \overline{G} (See theorem B). Clearly $\overline{N} = \overline{Q}$ by $\overline{G}' = G'/P' = P/P'$. Thus, by $\overline{Q} < \overline{N_G(Q)} < \overline{N_{\overline{G}}}(\overline{Q}) = \overline{N} = \overline{Q}$, $\overline{N_G(Q)} = \overline{Q}$, that is, $N_G(Q)P' = QP'$. Also, $P' < N_G(Q)$ by (6), so that $N_G(Q) = QP'$. Thus $QP' = QZ(G) < C_G(Q) < N_G(Q) = QP'$, hence $C_G(Q) = QP'$. Now it follows that $C_P(Q) = P \cap C_G(Q) = P \cap QP' = P'$.

(11) "The action of Q on P/P' is fixed-point-free".

Suppose that $\overline{a} \in P/P'$ and $\overline{a}^b = \overline{a}$, where $Q = \langle b \rangle$ (See (4)). Then $b^{-1}ab = az$, where $z \in P' = Z(G)$. Further, $b^{-2}ab^2 = b^{-1}azb = az^2$, ..., $b^{-q}ab^q = az^q$, so that $z^q = 1$. By (p, q) = 1, it follows that z = 1, hence $b^{-1}ab = a$. Also by (10) and $Q = \langle b \rangle$, we have $a \in P'$, hence $\overline{a} = \overline{1}$.

(12) "Each of proper Q-invariant subgroups H of P is abelian".

Suppose that H is nonabelian. By $1 \neq H' \leq P'$ and |P'| = p, H' = P'. Consider the action of Q on H. Since $C_H(Q) = H \cap C_P(Q) = H \cap P' = H \cap H' = H'$ and $H = C_H(Q) = (H, Q)$, H = H'(H, Q) = (H, Q). Then, repeating the last of the argument of (3) in proposition 9, we have $\gamma_{\infty}(HQ) = H$. Moreover, since $Z(G) = P' = H' \leq H$, it follows that $Z(G) \leq Z(HQ)$, hence $Z(G) \leq \gamma_{\infty}(HQ) \cap Z(HQ)$. However, by the induction hypothesis and $|HQ| \leq |G|$, also $\gamma_{\infty}(HQ) \cap Z(HQ) = 1$, a contradiction.

Now, we have proved that G is a special critical group. This is contrary to the hypothesis on G. Therefore, $\gamma_{\infty}(G) \cap Z(G) = 1$ is true.

Let Σ be the group-theoretical property: " $\gamma_{\infty}(G) \cap Z(G) = 1$ ". Then, from proposition 9 and theorem 10, it follows that the special critical groups are exactly all of the minimal non- Σ -groups in the class of GA-groups, where so-called minimal non- Σ -group G is a group which does not have the property Σ but each of whose proper sections has the property Σ .

Finally, because an extraspecial p-group P is a central product of nonabelian subgroups of order p^3 and, conversely, a central product of nonabelian groups of order p^3 is an extraspecical p-group (See III, 13.7 in [4]), then it is easy to construct special critical groups.

We have at once the following

Corollary | |. Let G be a GA-group. Then G is special critical-group free if and only if for every section H/K of G, $\gamma_{\infty}(H/K) \cap Z(H/K) = 1$.

Corollary 12. Let G be a GA-group and special-critical-group-free. Then $G' = y_{\infty}(G) \times P_1' \times P_2' \times \cdots \times P_r'$.

The following are several applications of theorem 10. These are the generalizations of the properties A-groups (See [2], [3]) to GA-groups.

Theorem 13. Let G be a GA-group which is special-critical group-free, and let N be a system normalizer of G. Then $G = N\gamma_{\infty}(G)$ and $N \cap \gamma_{\infty}(G) = 1$.

Proof. Since $N\gamma_{\infty}(G)/\gamma_{\infty}(G)$ is a system normalizer of $G/\gamma_{\infty}(G)$ and $G/\gamma_{\infty}(G)$ is nilpotent, it follows that the system normalizer of $G/\gamma_{\infty}(G)$ is just $G/\gamma_{\infty}(G)$ itself, hence $G=N\gamma_{\infty}(G)$. Obviously, we may assume that $\gamma_{\infty}(G)\neq 1$, i.e., G is not nilpotent.

Suppose that H/K is a principal factor of G and $K \le |H| \le |\gamma_{\infty}(G)$. If H/K were central, i.e., $H/K \le Z(G/K)$, then $H/K \le \gamma_{\infty}(G/K) \cap Z(G/K)$. However, since G/K is also a GA-group and special-critical-group-free, $\gamma_{\infty}(G/K) \cap Z(G/K)$ = 1 by theorem 10, a contradiction. Therefore H/K must be the noncentral. Now refine the series $1 \le \gamma_{\infty}(G) \le G$ into a principal series of G, i.e., $1 = K_0 \le K_1$ $\le K_2 \le \cdots \le K_s = \gamma_{\infty}(G) \le \cdots \le G$. Since K_i/K_{i-1} $(i = 1, 2, \cdots, s)$ are all noncentral, N avoids K_i/K_{i-1} , i.e., $K_i \cap N = K_{i-1} \cap N$ $(i = 1, 2, \cdots, s)$. Thus $\gamma_{\infty}(G) \cap N = K_s \cap N = \cdots = K_0 \cap N = 1$.

In general, we have only the following

Proporsition 14. Let G be an arbitrary GA-group and N a system normalizer of G. Then $y_{\infty}(G) \cap N \leq P'_1 \times P'_2 \times \cdots \times P'_r$.

A special critical group G is the example such that $y_m(G) \cap N \neq 1$.

Theorem 15. Suppose that G is a GA-group which is special -critical-group free, and let N be a system normalizer of G and $G = L_0 > L_1 > \cdots > L_n = 1$ the lower nilpotent series of G, where n is the nilpotent length of G. And let L be a normal subgrop of G. Then

- (1) $L = (L \cap \gamma_{\infty}(G))(L \cap N)$ and, in particular, this is a semidirect product.
- (2) If L is also nilpotent, then $L = (L \cap Z_{\infty}(G)) \times (L \cap Z_{\infty}(L_1)) \times \cdots \times (L \cap Z_{\infty}(L_n))$.

Proof (1) Let H/K be a principal factor of G. If $L \cap G' < \cdots < K < H < \cdots < L$, then $(H,G) < H \cap G' < L \cap G' < K$, so that H/K is central. If $L \cap y_{\infty}(G) < \cdots < K < H < \cdots < L \cap G'$, then, since G is a GA-group and by proposition T, $[H,G] < [G',G] = y_2(G) = y_{\infty}(G)$, hence $[H,G] < H \cap y_{\infty}(G) < L \cap y_{\infty}(G) < K$, so that H/K is also central. Now, refine the series $L \cap y_{\infty}(G) < L \cap G' < L < G$ into a pricipal series $1 < \cdots < L \cap y_{\infty}(G) = K_0 < K_1 < \cdots < L \cap G' < \cdots < K_s = L < \cdots < G$. Since all pricipal factors K_i/K_{i-1} ($i=1,2,\cdots,s$) are central, the system normalizer N covers K_i/K_{i-1} , i.e., $NK_i = NK_{i-1}$ ($i=1,2,\cdots,s$). Thus $NL = N(L \cap y_{\infty}(G))$. Then $L = L \cap (NL) = L \cap (N(L \cap y_{\infty}(G))) = (L \cap y_{\infty}(G))(L \cap N)$. Form theorem 13, it follows that the product is a semidirect product.

(2) Let $\{P_1, P_2, \cdots, P_r\}$ be a sylow basis corresponding to the system normalizer N, i.e., $N = \prod_{i=1}^r N_G(P_i)$, hence $N \leqslant N_G(P_i)$ $(i = 1, 2, \cdots, r)$. Thus $\{L \cap N, P_i\}$

 ${<\!\!\!\!<} P_i$. Since $L{<\!\!\!\!<} G$ and L is nilpotent, it follows that $L_{p_i}{\leq} G$ and $L_{p_i}{<\!\!\!<} G$, where L_{p_i} is the p_i -complement of L and L_{p_i} is the Sylow p_i -subgroup of L. So $L_{p_i} < |P_i|$. Also, if $a \in L \cap N$ and $z \in P_i$, then a = xy, where $x \in L_{p_i}$ and $y \in L_{p'_i}$. Thus, (a, z) = $(xy, z)=(x,z)^{\gamma}(y,z)=(x,z)(y,z)\in P_i'L_{p_i'}$ by $P_i'\leqslant Z(G)$. Therefore, $(L\cap N, P_i)$ $\leq P_i \cap (P_i'L_{p_i'}) = P_i'(P_i \cap L_{p_i'}) = P_i'$. Further, for $a \in L \cap N$ and $z \in G$, we have $z = z_1 z_2$ $\cdots z_r$, where $z_i \in P_i$ $(i = 1, 2, \dots, r)$. By $(L \cap N, P_i) < P_i < Z(G), (a, z) = (a, z_1 z_2 \cdots z_r)$ = $(a, z_1, ..., z_n)(a, z_1)^{z_1, ..., z_n} = (a, z_1, ..., z_n)(a, z_1) = ... = (a, z_n)...(a, z_n)(a, z_n) < Z(G)$. Thus $(L \cap N, G) \leq Z(G)$. So it follows that $L \cap N \leq Z_2(G)$, hence $L \cap N \leq L \cap Z_{\infty}(G)$ by proposition 5. Since $Z_{\infty}(G) = \text{Core}_{G}(N)$ (See VI. 11 in [4]), $L \cap N \leq L \cap Z_{\infty}(G) = L \cap I$ $\operatorname{Core}_{G}(N) \leq L \cap N$, hence $L \cap N = L \cap Z_{\infty}(G)$. Now $(\gamma_{\infty}(G), Z_{\infty}(G)) \leq \gamma_{\infty}(G) \cap Z_{\infty}(G) = 1$ $y_{\infty}(G) \cap \text{Core}_{G}(N) \leqslant y_{\infty}(G) \cap N = 1$ by theorem 13. So $y_{\infty}(G)$ commutes with $Z_{\infty}(G)$ element-wise. Sum up the above facts, and by (1) proved just, it follows that $L = (L \cap y_m(G)) \times (L \cap Z_m(G))$. Since $L \cap y_m(G)$ is a nilpotent normal subgroup of $y_{\infty}(G)$, $L \cap y_{\infty}(G) = \{(L \cap y_{\infty}(G)) \cap y_{\infty}(y_{\infty}(G))\} \times \{(L \cap y_{\infty}(G)) \cap Z_{\infty}(y_{\infty}(G))\} = \{L \cap y_{\infty}(y_{\infty}(G))\}$ $\times (L \cap Z_m(y_m(G))) = (L \cap L_1)(L \cap Z_m(L_1)), \text{ hence } L = (L \cap Z_m(G)) \times (L \cap Z_m(L_1)) \times (L \cap L_2).$ the required result follows from repeating the process.

Corollary 16 If G is a GA-group and special-critical-group-free, then Fitting subgroup $F(G) = Z_{\infty}(L_0) \times Z_{\infty}(L_1) \cdots \times Z_{\infty}(L_n)$.

This theorem is not necessary true for an arbitrary GA-group, for example, the special critical groups.

Theorem 17 Let G be a GA-group which is special-critical -group-free and D a system normalizer of G. Then $N_G(D) = D \times (\gamma_\infty(G) \cap C_G(D))$.

Proof By theorem 13, $G = D\gamma_{\infty}(G)$ and $D \cap \gamma_{\infty}(G) = 1$, hence $N_G(D) = N_G(D) \cap (D\gamma_{\infty}(G)) = D(\gamma_{\infty}(G) \cap N_G(D))$. However, $[D, \gamma_{\infty}(G) \cap N_G(D)] < D \cap \gamma_{\infty}(G) = 1$, i.e., $\gamma_{\infty}(G) \cap N_G(D)$ commutes with D elementwise. Thus $\gamma_{\infty}(G) \cap N_G(D) < \gamma_{\infty}(G) \cap C_G(D)$. Then, $\gamma_{\infty}(G) \cap C_G(D) = \gamma_{\infty}(G) \cap N_G(D)$ by $\gamma_{\infty}(G) \cap C_G(D) < \gamma_{\infty}(G) \cap N_G(D)$. Therefore, $N_G(D) = D \times (\gamma_{\infty}(G) \cap C_G(D))$.

An A-group G, obviously, is a GA-group which is special-critical-group-free. And $y_{\infty}(G) = G'$ and $Z_{\infty}(G) = Z(G)$. So the above theorems imply the corresponding theorems on A-groups.

References

- [1] P. Hall, J. Math. 182 (1940), 206-14.
- [2] D. R. Taunt, Proc. Combridge Phil. Soc. 45, 14-42 (1949).
- [3] R. W. Carter, Proc. London Math. Soc. 12, 535-563(1962).
- [4] B. Huppert, Endliche Gruppen, Springer, 1967.

关 于 广 A — 群

Ŧ 汝

(北京师 范学院分院)

櫹 要

P. Hall 定义了A。群的概念,所谓A。群是指Sylow子群都是交换群的有限可解群. D. R. Taunt, B. Huppert 和R. W. Carter 都研究过A-群的结构. 本文定义了比A-群更弱的 一类群,即广A-群(或称GA-群),并将A-群的若干重要性质推广到广A-群。

为了描述广A-群的性质,我们还引入了

定义 2 称群G为特殊临界群,如果 (a). G有一个正规的超特殊p-子群P(即Z(P)= $P' = \Phi(P)$ 且 |Z(P)| = p; (b). 存在素数 $q(\neq p)$ 阶子群Q, 使 G = PQ; (c). [P',Q] = 1. Q 依共轭无不动点地作用于P/P' 且 P 的任意Q 不变真子群都是交换群。

可证,对于特殊临界群G, G 必为广A-群,且 $\gamma_{\infty}(G) \cap Z(G) \neq 1$,但对G 的每个真截断 (section)H/K, 有 $y_{\infty}(H/K) \cap Z(H/K) = 1$, 这里 $y_{\infty}(G)$ 表示G的幂零剩余.

本文的主要结果是:

定理 设 G 是广A-群且每个截断都不是特殊临界群(也称 G 与特殊临界群无关),则 $y_{\infty}(G) \cap Z(G) = 1$.

我们还给出了广A-群上述基本性质的几个应用。

设G是广A-群且与特殊临界群无关,又令N是G的一个系正规化子(system normalizer), 那么,

- (1) $G' = \gamma_{\infty}(G) \times P_1' \times \cdots \times P_n'$, 这里, P_1, \cdots, P_n 是 G 的不同素因子对应的Sylow 子群.
- (2) 若L为G的正規子群,则 $L = (L \cap p_{\infty}(G)) (L \cap N)$ 且是一个半直积,特别地,G = $N_{\mathcal{V}_{\infty}}(G) \coprod N \cap \mathcal{V}_{\infty}(G) = 1.$
- (3) 若L为G的正规的幂零子群,又设 $G = L_0 > L_1 > \cdots > L_n = 1$ 是G的下幂零群列, n 为幂零长,则 $L = (L \cap Z_{\infty}(G)) \times (L \cap Z_{\infty}(L_1)) \times \cdots \times (L \cap Z_{\infty}(L_n))$,这里, $Z_{\infty}(G)$ 表示 G的超中心.
 - $(4) N_G(N) = N \times (\gamma_m(G) \cap C_G(N)).$

最后, 当G为A-群时, 上述结果即为A-群的已知结论.