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P.Hall defined the concept of A-groups in [ 1] as follows,

Definition |. A finite solvable group is an A-group if all of its Sylow sub-
groups are abelian.

P.Hall mentioned the following theorems without proofs.

Theorem A. Let G be an A-group. Then G'NZ(G)=1.
Theorem B. Let G be an A-group and let N be the system normalizer of

G. Then G=G'N and G'(\N=1. .

D.R.Taunt proved these theorems in [ 2]. D.R.Taunt, B.Huppert and R.
W.Carter studied the structure theory of A-groups (See [2], (3] and [41]).

In this paper we define the concept of so-called “generalized A-group”,
which are weaker than that of A-groups, and generalize the properties of A-
~groups to the generalized A-groups.

Definition 2, A finite solvable group G is called GA-group, i.e., generalized
A-group if derived group of every Sylow subgroup of G is contained in the cén— ’
tre of G,

Obviously, an A-group is a GA-group but the converse is not true,.

Throughout this paper, let p,, p,, -+, p, be all of the distinct prime divisors
of order of G and let P,P,,+, P, be Sylow subgroups corresponding to the pri-
me divisors. Suppose that G is a GA-group, by definition 2, then P/P;.«P/=P/
XPix s X P'<Z (G).

Proposition |. Let G be a GA-group and P/x P;x+-xP/<H .G, then G/H
is an A-group. Conversely, let G/H be an A-group and H<Z (G), then G is a
GA-group and P/XP,;xe++xP/<H. Thus, in fact, a GA-group is a central exten-
sion of an abelian group by an A-group.

Proof. Suppose that G is a GA-group and P/x P;x «x P/<HAG. Then the
Sylow subgroups of G/H are bH/H(i=1,2,~,r). Since (xH, yH)=(x, yJHeP'H
=H for x,y in P, P,H/H is abelian. So G/H is an A-group. Conversely, suppose
that G/H is an A-group and H<Z(G). Then for a Sylow subgroup P of G, by
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G H being an A group and PH/H being a Sylow subgroup of G/H, PH/H is
abelian. Thus, (P,PJH/H={PH/H, PH/H] =1, This shows that P'<H<Z(G).
So G is a GA-group and P/'x PZ'Xo--xP,K\H.‘
Proposition 2. All subgroups and all quotient groups of a GA group are
also GA groups.
Proof Suppose that G is a GA group and H<G. If § is a Sylow p-sub
group of H, then there exists a Sylow p Subgroup P of G suchthat §<_ P, Hence
S« P'<.Z(G'. Thus, S'<Z(H). So H is a GA group. Supposz that N .G,
Then every Sylow p subgroup of G N is of form PA'N, where P is some Sylow
p subgroup of G. Since (xN, yN] = {x, yINZ (GIN-N<Z:G:N) for x,y in P,
(PN N)<"Z(G.N)Therefore, G/N is a GA group.
Proposition 3. Let G be a nilpotent group. Then G is a GA group if and
only if the nilpotent class of G is at most 2,i.e., ¢{G)<.2,

Proof . This follows immediately from G = P/ - P, <+ P  and the nilpotency of G

Corollary 4. The system normalizer of & a GA group is a nilpotent group
w hose nilpotent class is at most 2.

We know that if G is an A-group, then Z_¢G) - Z (G), where Z _(G) is the
hyperceatre of G(See [ 2 1). In general, we have only the following.

Proposition 5. Let G be a GA group, then the upper central series of ¢
terminates 1n Z,{(G) or Z,(G), that is,Z_(G) = Z (G;.

Proof. By the definition of GA group, P/xP,x-+xP/< Z/G). Then G/Z(G)
is an A group by proposition 1. Thus, Z_(G)/Z (G)~Z G 'Z G =Z 'G/Z (G))
Z(G) 'Z(G), so Z_(G)=Z,(G).

Let G = 7 (G) >y ,(G) Z>p,(G)+--be the lower central series of G, where v (G) -
{7, ,/GY, G)(i=1,2,+=) and p,(G) is the nilpotent residual of G. It is easy to
check that y,(G/K)=p,(G)K/K (i=0.,1,+) by inductin, and further y (G/K)-
» {G)K'K. We know that G'=p _(G). i.e., y 1G)1=p (G) for A group G(See 2.
Generally, we know only the following.

Proposition 6. Let G be a GA group. Then G’ p /G)D. where D= P/ <P, x
ce X P,

Proof By proposition 1,G/D is an A group. Then, since DG and G’ D
(G'D)Y =y (G/D)=p (G)D/D, G'=p (G D.

Proposition 7 Let G be a GA-group. Then the lower central series 0! G ter
minates in p (G) or »,(G), that is, p _(G) = »,(G) .

Proof Since G,»_(G) is nilpotent, by proposition 2 and 3. the nilpotent
clas s ¢(G 'y, (G))<<2. Thus »,(G) 'p (G) ~y,(G p (G))= 1,50 v (G)=r,(G}.

We shall study the most important properties of GA groups.

Theorem 8. Let G be a GA group and P a Sylow p subgroup of G, Then
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PNG' (R Z(G) =P,

Proof Since G is a GA-group, P'<Z(G), so that P PNG'NZ (G). And by
transfer theory, P(NG’'(\Z (G)< P’ (For example,see [4]). So PNG'NZ(G)=P’.

" Obviously, when G is an A-group, theorem 8§ implies theorem A4. It is easy
to show that G'NZ (G) =1 is not genrally truc for a GA-group G. However, we
know that p (G)=G’ for an A-group G and y_(G)<G’ for an arbitrary group G.
These facts make the conjecture whetenr y (G)(1Z(G) =1 for a GA-group? In
fact , the following so-called “special critical group” shows that .the conjecture
is not true. But we can prove thatyp (G)(Z (G) =1 for a special-critical-group-
free GA-group G, that is, th>e following theorem 10.

Definition 3. A group G is said to be special critical if it satisfies the fol-
iowing conditions:

(a) G has a normal extraspecial p-subgroup P for some prime p (that is,
Z((P)=P =¢(P) and |Z(P)|=p);s

(b) There exists a cyclic group Q of prime order ¢ such that G=PG, where
the prime q7%p;

(c) (P,Q)=1, and when Q acts on P by conjugate, the induced action of
@ on P/P’ is fixed-point-free, and every Q-invariant proper subgroup in P is
abelian, (For the extraspecial p-group and critical group, see, for example, I,
13.7and X, 2.1in [4 ).

Remark. The special critical groups are separated into tow classes, When -
the action of Q on P/P’ is irreducible, G is said to be a [ -group. Obviously,
for I -group G, the Q-invariant proper subgroups in P are only P’ and 1. When
the action of Q on P/P’is reducible, G is said to be ]I -group. For a [I -group,
by Maschke’s theorem, P/P'=H,/P’'x++xH /[P’, where H,/P' (i=1,2,¢,5)are
all irreducible Q-invariant proper subgroup of P/P’ and s>2, We assert that s=
2. Otherwise, whenever i+#+j, H H, must be a Q-invariant proper subgroup of P,
hence by (c), H,H, is abelian. However P=H,H,---H, and is not abelian, a con-
tradiction .

Proposition 9. Let G be a special critical group. Then ( 1) G is a GA-group;

(2) Z(G)=Z(P)=P'=d(P); (3)(P,Q)=P and y, (G)=G'=P, hence p_(G)
Z(G)=Z(G)#1. (4) For erery proper section L/Kof G, y (L/KYNZ(L/K)=1;
(5) When p>2, exp P=p; when p=2, expP =14,

Proof. (1) Obviously. ;

(2) Write 0=¢{b), then every element of G is of form xb', where xeP.
Suppose that xb'eZ (G). Then b (xb )b=xb', hence b 'xb=x. It follows that xe
P’ from the action of Q on P/P’ being fixed-point-free and @=<¢b). Take yeP
and y&P’. Since y(xb') = (xb")y, by xe¢P’ as proved above and P’'= Z(P), it
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follows that b 'yb'=y. Again by fixed-point-free action and y&P’, it follows
that ' = 1. These arguments show that Z (G)< P’=Z (P). Finally, by (a) and (c),
we have also Z(P)< Z(G). Therefore Z(G)=Z(P)=P =®(P).

( 3 ) Consider the action of Q on P. By (¢), P'<<C,/Q). Conversely, if
xeC,(Q), then b7 xb=x. However, by the action of Q on P/P’ being fixed-
point -free and @=<b), it follows that x¢P’, Thus, C,(Q@)=P’, So by the the-
ory of action of z’-groups on r-groups, it follows that P=C (Q)(P,Q1=PTP,
Q1=(P, Q), since P’ consists of non-generators of P. Thus, since P._G and Q
is a cyclic group, P=(P, Q1< (G, G)=[(PQ, PQI<P, hence G'=P. Also P=[P, Q)
<[P, GJ P, hence [P, G)=P. Thus y(G) =y,(G) =[G’, Gl=(P,G}=P.

(4.1) The case where G is a T -group. First, suppose that L is a proper
subgroup of G. If Lis a p-subgroup or a g-subgroup, then, obviously, y (L/K)
=1 for any quotient group L/K of L, hence y (L/K)N\Z(L/K) =1. Therefore,
we need only to consider pq“Ll. Now L=HQ where H is a Sylow p-subgroup
of L, and Q is also Sylow q-subrroup of L. Since P, G, HL L. So H is a Q-
invariant proper subgroup of P. By (c), H must be abelian. Therefore, L is
an A-group. Thus, since quotient groups of an A-group are A-groups, by theo-
rem A, it follows that » (L/K)NZ(L/K)=(L/K)'(NZ(L/K)=1 for any quotient
group L/K of L.

Second, suppose that L=G and 1#+K. G.If ql]Kl, then G/K is a p-group,
hence, 7 (G/K)NZ(G/K)=1.So we assume that K<P. Now, since KP'/P’ is Q-
invariant and the action of Q on P/P’ is irreducible, KP'/P'=P/P’ or 1, hence
P=KP'=K or K=P'(by |P|=p). If K=P, then G/K=Q, so that y (G/K)
Z(G/K) =1 obviously; If K=P’, then G/K =G/P’, which is an A-group by pro-
position | (Note Q'=1), hence also » (G/K)NZ(G/K) =1,

(4,.2) The case where G is [l -group. First, let L and H be the same as
(4.1). Since H is a Q-invariant proper subgroup of P, by (c), H is abelian ,
So L=HQ is an A-group, Then, we immediately obtain the requared result for
any quotient group of L.

Scond, suppose that L=G and 1£K2LG. By a similar to (4.1), we can assu-
me that K< P, further P'-£K+P. Obviously P’<KP'<P and KP’'Z: G, hence,
KP’/P’ is a Q-invariant proper subgroup of P/P’. By Maschke’s theorem, P/P’
=KP'/P'xM/P’, where both KP'/P’ and M /P’ are Q-invariant proper subgroup
of P/P'. By (¢c), K and M must be abelian. Then, since P=KP'M =KM and P
is not abelian, (K, M)=1. Thus, using (K, MJ<<P’ and |P’|=p, we have that
(K,M)=P'. By K/.G, (K, M)<K, hence P’<K. Therfore, since G/P’ is an A-
group and G/K=G/P’'/K/P’, G/K is also anA-group. So y (G/K)NZ(G/K)=1.

(5) If p#£2. then, by expP’= p, P is a p-abelian p-group. Since ®(P) =
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Z(P)=P =2Z(G), it follows that if x¢P and a<¢Q, then x°<Z(G) and hence (x,a)’
= (x %P =x"(x"=(x",a)=1.Also, by (3) proved above, P=[P, Q). There-
fore, P={(x,a)|xeP, aeQ)<Q (P) =;\1(P)<P since P is P-abelian P-group, where
Q,(P)={xeP|x"=1) and A(P)={xeP|x"=1}. So P=A,(P), that is, expP=p. If
p= 2. then, since P is nonfabelian, expP =1, ;

The following is the most inportant property of GA—group, which is the
main result of this paper. ‘

Theorem |Q. Let G be a GA—group and special <critical-group -free, that is,
every section of G is not isomorphic to any special critical group. Then p (G) N
ZGy=1.

Proof . We argue by induction on |G|.. Let GA-group G be a counterexample to
the assertion with least possible order. Through the following stepts, finally, we
shall reach a contradiction, hence complete the proof.

(1) “Write K=p (G)(N\Z(G). Then K must be the unique minimal normal
subgroup of G and of prime order p”. Note that the following p, throughout
the proof, refers to ihe prime -

Obviously, K31 since G is a counterexample. Let 1-AH. G. By proposition
4,G/H is also GA-group. Since G/H is also special -critical-group-free and |G/H |
<|G|, KH/H<y (GYH/HNZ(G)H/H<yp (G/H)NZ(G/H)=1.Thus, KH=H, hence
K<H. So K is the unique normal subgroup of G. Choose arbitrarily an element
a of prime order p of K. Now since (a)<K<Z(G), <a>L\G. So K=<a) by the
minimality of ‘K.

(2) “If H is a nontrivial normal proper subgroup of G, then H must be a
p-group”.

Suppose that y_(H)+1. Since y (H) char H-:G, y (H)£ G- Then, by (1)
proved just, K<{p (H). Also, by K<H and K<Z(G), K<Z(H). So K<y _(H) N
Z (H). But, since H is also special-critical-group-free and |H|<|G|, y (H)
Z(H)=1, a contradiction . Therefore, y (H)=1, hence H must be nilpotent. Now
suppose that S is a Sylow subgroup of H. Since S char HA G, SAG. By (1),
K<S. So H must be a p-group.

(3) “G’ must be the Sylow p-subgroup of G”. White G'=P, hence P<|G.
Since, obsiously, G is nonabelian, G’'#1. By (2) proved just, G’ is a p-
group. Thus, G'<P, where P is a Sylow p-subgroup of G. Obviously, G is not

a p-group. Thus, if G'-£P, then G/G’ would have the nontrivial proper normal
p-complement H/G. Hence H would be a proper normal subgroup of G and
not a p-group, a contradiction to the above (2 ). Therefore, G'=P. W

(4) “The p-complement Q of G must be a cyclic group of prime order ¢”.
Hence G=PQ and Q=(b).

By (3), G=G’'Q and G’'N\Q=1. hence Q=G/G’ is abelian. Let H /G’ be a pro-
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per subgroup of G/G’. Then H is a proper normal subgroup of G. By (2), H
must be a p-group. So H<P=G’, hence H/G’'=1. This shows that G/G’ (hence
Q) is an abelian simple group. Therefore Q is a cyclic group of prime obder
g, where g=£p.

(5) %y (G)=P”,

Since G is a GA-group, by proposition 6 and (3) and (4), it follows that
P=G"=y (G)P' =y (G).

(6) “Z(G)=P’ =K, in particular, |Z(G)|=p”.

Obviously, Z(G)+1.By (2), Z(G) is a p-group, hence Z(G)< P. Thus,
by (5), Z(G)=ZG)NP=Z(G)(y(G)=K. And by theorem 8 and (3), also
P'=PNG'NZ(G)=Z(G). N

(7) “Z(P) is a cyclic group”.

Suppose the assertion to be false. 2,(Z(P))={xe¢Z (P)|x"=1) would be an
element abelian group of order pr and r>1. Since @2,(Z (P) ) char Z(P) char
P/.G, Q(Z(P)<IG. By (1), K<Q,(Z(P)). Hence Q(Z(P)=KxJ, In parti-
cular J#1 since |K|=p and r>1. Consider the action of Q on Q,(Z(P)) by
the conjugate. Since K<Z(G), K is a Q-invariant subgroup. By Maschke’s
theorem, £,(Z(P))=KxJ,, where J, is also a Q-invariant subgroup. Hence,
since J,<Q,(Z(P))<Z(P), J, is invariant under the action of P by the conju-
gate. Then, by (1) and (2), K<J,, a contradiction. Therefore r=1,1i.e.,

Z (P) must be a cyclic group.
(8) “Z(P)y=pP"”,

By (7), we may write Z(P)={x), where x is of order p". By the property
of p-groups, n>>1, The case: n=1, Since Z(P) char P<]G, Z(P)<IG. Then by
(1), K<Z(P). Thus Z(P)=K by the orders. So Z(P)=P' by (6). The case:
n>>1,Now, 1#£Q(Z(P))<JG. Since (1), K<Q(Z(P))<Z(P), in particular, K=
(x""“l Y. Since Z(P) char P<IG, Z(P)<|G. Thus, b 'xb=x". However, since b’=
1, A%=1 (mod p" by x=b"xb"=x", hence (A1-1)(A7 " +ee+ 1+ 1)=0 (mod p". By
(6), K=Z(G), hence x” €¢Z(G). Thus x” =b"'x"b=x*"_ This shows that
p" 1 (A-1)==0 (mod p"), hence A==1 (mod p) . Further, it follows that A, A%, s, 19 ' = |
(mod p), so that 17 '+ e+ A+ |==g£0 (mod'p) Therefore, i=1 (mod p"). Hence
b'xb=x. Since G=PQ, Z(P)={x)<<Z(G). By (6) and the orders, we reach a
contradiction, So it follows that #>>] is impossible.

(9 ) “P is an extraspecial p-group, that is, Z(P)=P' =®(P) and |Z(P)|=p”.

If x and y are in P, by (8), x 'y 'xy=z¢P’'=Z(P) and z°=1. Thgus, it is
easy to verify that y ’xy’=xz’=x. This shows that y”’¢Z(P). Hence ¢5,(P) =
(y?lyePY<<Z(P). Thus P'<®(P)=P & (P)<P'Z(P)=P’, hence ®(P)=P', 1t fol-
lows that Z(P)=P'=®(P) and |Z(P)|=p from (6), (8).
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(10) “C(@)=P"”,

Since Sylow subgroups P=P/P’ and Q =QP’/P’ of G=G/P’ determine a Sylow
basis of G, N=Nz(P)NNz(Q)=GNNz(Q)=NzQ) is a system normalizer of G.
Then, since G is an A-group, N is a complement to G’ in G (See theorem B).
Clearly N=Q by G'=G’/P’=P/P’. Thus, by (_2<A7;(—Q—)<.1—\"5(6) =N=0, N(Q) =
Q, that is, N (Q)P'=QP’. Also, P'<N,(Q) by (6), so that N (Q)=QP’. Thus
QP =QZ (G)<C Q<N Q) =QP’, hence Cyx(Q)=QP’. Now it follows®hat C,(Q)
=PNC(Q)=PNQP =P,

(11) “The action of Q cn P/P’ is fixed-point-free”.

Suppose that g¢P/P’ and @®*=a, where Q=(b) (See (4)). Then b‘'ab=az,
where zeP’=Z (G). Further, b ’ab*=b 'azb=az’,+,b%ab"=az’, so that z'=1. By
(p, g)=1, it follows that z=], hence b ub=a.Also by (10) and Q=(b), we have
acP’, hence a=1.

(12) “Each of proper Q@-invariant subgroups H of P is abelian”.

Suppose that H is nonabelian. By 1#H'<P’ and |P’|=p, H =P’. Consider
the action of Q on H. Since C,(Q)=HNC (Q)=HNP=H(\H'=H and H=C Q)
(H,Q), H=H'{H, Q1 =[(H, Q). Then, repeating the last of the argument of (3)
in proposition 9, we have y (HQ)=H. Moreover, since Z(G) =P '=H'<H, it
follows that Z(G)<{Z (HQ), hence Z(G)<y (HQYNZ (HQ). However, by the
induction hypothesis and |HQ|<|G|, also » (HQ)NZ (HQ) =1, a contradiction.

Now, we have proved that G is a special critical group. This is contrary
to the hypothesis on G. Therefore, y _(G)NZ(G)=1 is true. . ..

Let £ be the group-theoretical property.“y (G)\Z(G)=1"”. Then, from pro-
position 9 and theorem 10, it follows that the special critical groups are exactly
all of the minimal non-X-groups in the class of GA-groups, where so-cdlled
minimal non-X-group G is a group which does not have the property X but
each of whose proper sections has the property Z.

Finally, because an extraspecial p-group P is a central product of nonabe-
lian subgroups of order p’ and, conversely, a central product of nonabelian
groups of order p’ is an extraspecical p-group (See II, 13.7 in [4]), then it
is easy to construct special critical groups.

We have at once the following

. Corollary |l. Let G be a GA-group. Then G is special critical-group free
if and only if for every section H/K of G, y (H/K)(\Z(H/K)=1.

Corollary |2. Let G be a GA-group and special-critical-group-free. Then
G’ =y (G)x P/ X P/x = xP/,

The following are several applications of theorem 10. These are the gene-
ralizations of the properties A-groups (See [ 21, [3]) to GA-groups.
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Theorem |3. Let G be a GA-group which is special —critical group -free,
and let N be a system normalizer of G. Then G=Ny (G) and Ny _(G)=1.

Proof. Since Ny (G)/y, (G) is a system normalizer of G/p (G) and G/y (G)
is nilpotent, it follows that the system normalizer of G/y(G) is just G/y (G)
itself, hence G =Ny (G). Obviously, we may assume that y (G)+1,i.e., G is
not nilpotent, ‘

Suppose that H/K is a principal factor of G and K<IH<ly (G). If H/K
were central, i.e., H/K<Z(G/K), then H/K<yp (G/K)NZ (G/K). However,
since G/K is alsoa GA-group and special-critical-group-free, p (G/K)(\Z (G/K)
=1 by theorem 10, a contradiction. Therefore H/K must be the noncentral.
Now refine the series 1<{y (G)<(G into a principal series of G, i.e., 1=K;<K|
<K, oo K =p (G)<-<G. Since K,/K,, (i=1,2,+,5) are all noncentral, N
avoids K,/K,,,i.e., K,(\N=K_ (N (i=1,2,>,5). Thus p(G)(W=K [N =+
=K,NN=1. ”

In general, we have only the following

Proporsition [4. Let G be an arbitrary GA-group and N a system normalizer
of G. Then y (G)N<P/xP,X+XP/,

A special critical group G is the example such that y (G) N1,

Theorem |5. Suppose that G is a GA-group which is special -critical-group
free, and let N be a system normalizer of G and G=L,>L,>-->L =1 the lo
wer nilpotent series of G, where n is the nilpotent length of G. And let L be a
normal subgrop of G. Then '

(1) L=(LNy (GHLNN) and, in particular, this is a semidirect product.
(2) If L is also nilpotent, then L=(LNZ (G))x (LNZ_(L,)) XX (L
Z(L)).

Proof (1) Let H/K be a principal factor of G. If LNG' < oo K<TH< 00
L, then (H, GI<HNG'<LNG'<K, so that H/K is central. If Ly (G) <--<K <<
H+< o< LG, then, since G is a GA-group and by proposition 7, (H, GI<[(G’, G]
=y,(G) =y (G), hence (H, GIKHNy (G)<LNy (G)<K, so that H/K is also cen-
tral. Now, refine the series Ly _(G)<LMNG'< L<G into a pricipal series | <(ss*<{
LNy (G) =K <K, < oo LNG'< e <K, =L+ G. Since all pricipal factors K,/
K., (i=1,2,-,ys) are central, the system normalizer N covers K,/K_,, i.e.,
NK,=NK,_, (i=1,2,*+,5). Thus NL=N(LNy(G)) Then L=L((NL)=LNINLN
7.(GN]=(Lp (G))(LNN). Form theorem 13, it follows that the product is a
semidirect product. '

(2) Let {P,P,,-~,P } be a sylow basis corresponding to the system nor-

malizer N, i.e., N= [[NgP,), hence NN P,) (i=1,2,%=,r). Thus (LNN,P,)
i1
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<P,. Since L<IG and L is nilpotent, it foliows that LPI,QG and Lp,<|'G, where
Lpi/is the p, -complemeqt of L and LP, is the Sylow p,-subgroup of L. So L',,i ~<|P,.
Also, if a¢L(\N and ze¢P,, then a=xy, where xeLp‘_ and yeL,,; . Thus, {a, )=

(xv, 2)=(x,2)(y,2)=0(x,2)(y,2)€P/L, . by P/<<Z(G). Therefore, (L{ N, P,]
<P, (Y(P/L,) =P:-"(P,.ﬂLp;) =P, . Further, for a¢L{IN and z¢G, we have z=2zz,
=+z,, where z,¢P, (i=1,2,++,r).By (LN, PIKP/<Z(G), (a,z])=(a,z,z,z,]
=(a, z,+z,)(a, z,J7"" =(a, z,ez,)(a,z,) =+ =(a, z,)(a, z,)(a,z,J<Z (G). Thus
CLMN, GI<Z(G). So it follows that LN<Z,(G), hence LOANKLNZ (G) by
proposition 5. Since Z_(G) =Core(N) (See V[. 11 in [4]), LNNLNZ_ (G)=LN
Core (N)<LNN, hence LN=LNZ.(G). Now (. (G), Z (G)IKy(G)NZ(G)="
y.(G)Core ;(N)<p _(G)(YN=1 by theorem 13. So p_(G) commutes with Z_(G)
element-wise . Sum up the above facts, and by (1) proved just, it follows

that L= (Lﬂym(G))x (LNZ_ (G)). Since Ly, (G) is a nilpotent normal subgroup

of » (G), LNy (G) =[(Lﬂym(G))ﬂym(ym(G))]x[(Lﬂyw(G))ﬂZm(yw(G))]=[Lﬂym(ym(G))]
x(LNZ (. (GN)=(LNL,((LNZ (L)), hence L=(LNZ_(G))*x(LNZ(L,))*x (LNL,).
the required result follows from repeating the process.

Corollary |6 If Gis a GA-group and special-critical-group-free, then Fitting
subgroup F(G)=Z (L)) x Z (L)«xZ (L,) . |

This theorem is not necessary true for an arbitrary GA-group, for example,
the special critical groups.

Theorem |7 Let G be a GA—grqup which is special-critical -group-free and
D a system normalizer of G. Then Ny D) =Dx (y,(G)NCy(D)).

Proof By theorem 13, G=Dy (G) and Dy (G) =1, hence N (D)= N D)
(Dy (G))=D(y (G)(NgD)). However, (D, j:m(G)ﬂNG(D)j<Dﬂyw(G) =1,1i.e.,
7.{G) N D) commutes with D elementwise. Thus y_(G) N D)<y (G)C D).
Then, 7, (G)NCx(D) =y (G)NND) by y(G)NCD)Ky(G)Ng(D). Thertfore,
NgD)=Dx (p LG)NCLD)).

An A-group G, obviously, is a GA-group which is special -critical-group-
free. And p_(G) =G’ and Z (G)=Z (G). So the above theorems imply the corres-
ponding theorems on A-groups.
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EX 1 HWHRUBRBGREI A-H, NRGHHESYylowFRUSHERT R IO,
HTHRA-BOER, RINVESIANT
X2 HBRCGHRKERE, DR @. GHE-AERANBRK,- THP WZ(P) =
P'=oP) B |Z(P)|=p);(b). BEXRB¢(FP HTHQ, #G=PQs (). [P,Q1=1,
QRIS EMAEHTP/P HPHEBQ AT H TR THRE.
'ﬁTiﬂi, TR RBEG, GLANA-B, By (G)NZ(G)+1, BXGHENEBW
(sectiom)H/K, By (H/K)NZH/K)=1, X8y (G)ETRCHHESHK.
AU FEEERE.
TE RCGESA-BESITENSFARENARKBRBALKGC 5REBRHLX), W
Y(G)NZ(G) = 1.
RINEEHTI A-BRERERERNILASANA .
RCE"A-BEAERABRBILX, XENEGH N RERLTF (system normali-
zer), M4, ' '
(1) G =y (G)XP/xesxP!, KB, P, P, RGHRARHEFHIMSylow T .
(2) ZHELAHGHIERTH, W L=(LNy (G LNN)HR—AEEHBR, ¥HlH, 6=
Ny (G)ANNy (G) =1.
(3) HELAIGHWEHRNTERFH, XRG=L,>L >>L,=1RGHTEEZH,
n JFERE, W L=(LNZ(GYx (LNZ (L)) X x(LNZ(L,), X8, Z(G)EKRGC
L.
(4) Ny (N) =Nx (3 (G)NC - N).
BiE, HGHA-BN, FRLGRUMIA-BHEMEL.
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