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Abstract

In Yuan’'s paper [ 173, we have proved the asymptotic normality of least
- square estimator in system identification using the central limit theorem for
martingales. However, the conditions of [ 11 are rather harsh. In this artical,
we use Mcleish’s dependent central limit theorem to improve the above result.

Rest Restatement of the Problem
Consider the following system in regressive form
‘ y() =¢"()8+ (1) (1.1)
where
6" = (a,a;°a, b ++b, ) 10 be estimated
ST W)= —y(t=1Deee—yt—1,), u(t=1), e, ult-n,)l,
u(t) and y(t) are the scalar input and output at time ¢.
Asumptions on the system and noise;
C1l : The system (1.1) is strictly causal, i.e.,n,>n,. Morever, y(t)=u(t)

"
=0, when <0,

C2 : The all zeros of A(q_') are strictly inside the unit circle.

C3: {e(r)}}7,is a martingale difference sequence. If #,, denotes the smal
lest o-algebra generated by &(0), &(1),---e(z), then E(e&(t) I.‘f,,‘,__lJ:()
and E(&(t) lf,,,,_1:I=A,2 for any £=1,2,e,n.

C4 : The 4th moments of &(¢) is finite, i .e.,

ECeY ()|, ,_,)=B}< oo for any 1=0,1,2,e (1.2)

As usual, we assume that «(r) and y(z) are #,, measurable, then the follo-

wing proof will include the closed-loop case.

The criterion function is

~ I = MY () -9 (08)’ (1.3)
r o
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where M, is a weighting function,
The LS estimator of @ is

8=PLET M6WY(©) | (1.4a)
t=1
PP =iy MeeT() (1.4b)
' =1
Introduce some notations,
S, ,=—L3 Mewer) (1.5)
' Jn ‘=
With some calculus, we obtain that
—_— g A
S,=Jn P (8,-8) (1.6)

The problem is to discuss the asymptotic distributton of S, , .
Main Results
In order to obtain the asymptotic distribution of S, ,, we need the following

lemmas.
Lemma |. If C1 and C2 are held
|EuCt ) u(r)ue)ut,) |<r<<oco, yity,t,,1;,1,€N (2.1)
where r is a constant, then
Ej* () <M, <oo (2.2)

here A(q )y(t) =B(qg")u(t) and M, is a constant .
Proof. From condition Cl, we have

-1
y)r=3% gule—i)
t=1

t—1
Hence Ey*(t) = |E 3 _1g,l,g,z,gi,,g,y(t—il)u(t—iz)u(t—i3)u(t—i4) |

falyelyad,
1 4 >, 4
<r(lg g) <"(i‘\__‘=_.1 g) <oo

Lemma 2. If C1, C2, C3, and C4 are held and

EE' (1) = gi<W <oo (2.3)
where W is a constant, then
EF(1)<M, (2.4)

where A(g ' )#(r)=¢(¢r) and M, is a constant .
" The proof is similar to that of lemma 1.
Lemma 3. If C1,C2,C3,C4, (2.1) and (2.3) are satisfied, then Ey*(s)<
M, vt>0 _
where M is.a constant.

Proof. From (1.1), we have
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— -1

4 ___(_‘l___) _B_(g__)_ ) 3(__L_ () 6(—-(—‘L—')— T
y )=« N u(eN*+ (A(q_,)u 1) A(qﬂ)e )+ A )u )

-(—A(—ql:f-)—e(z)) 4(——‘47,;—14(;))( T e’ (T(q—l,lTa(n)“
According to Lemma 1, Lemma 2 and Holder inequalily, we come to the conc-
fusion s
Henceforth if x is a vector (x, is the ith element of x), x denotes the vec-
:>r in which the ith element is x,.
Lemma 4. If C1,C2,C3,C4, (2.1) and (2.3) are satisfied and
supM,<d<co then,

max|-—¢(t)M () |—~>O as, n—>oo (2.5
— t<n n )
here P denotes convergence in probability .
Proof. Let o, —max| ~u(t-DM, e(t)|
then for 1>0
P! >1<T P( l—%—u(t—-l)M;e(t) I>1)
=
. 4 n
,142 ):Eu (r- I)ﬁ‘< PO Z 0, as a—>co
n =1 =
The second inequality helds because of C3, C4 and Markov’s inequality .
Hence, .
w;—g—>0, as n—>oo, [=1,2,%n, (2.6)
~— j 1
Let ri=max|= y(~-j)M,e@) |
<n Jn. "
PUri>H<Y P( b% = PM,ee) >
- t=1 L8
&t 4 6*Mo -
</14n2 ,.g Evie— j)Bi< 24, 0 0, as n—>co
Hence '
ri——P_’O, as n—=oco . j':l,z) ...9”,; (2'7)
From (2.6) and (2.7), we obtain that
max|=1-¢(t)M,e(t)|-—l)—>0, as n—>oo
<n Yn T
- The proof is complete.

Lemma 5. All the conditions of Lemma 4 are satisfied, then

E(|max|-L 6() M, e(0) | DA< T<oo (2.8)
<n Jn
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where ;+fidenotes Buclid norm and T is a constant .
Proof. Since

E W) <30 Evutr- DMI) <8 frw=T, <oo
t=1
vl = 1,2,"', "b
and
iy2 LR 2 Ly a2 . _
E(r,) <73 Erfte- A; J=1,2,%, 1,
t=1

LMW =T ,< o
T=max (T, T,)
then we obtain (2.8).
Lemma 6. If C1,C2,C3 and C4 are satisfied and
M, =M , A=A’

R .
then —%Z M6 (D) —>R, as n>oo (2.9a)
1=1
P—P, as np-—>oo
provided that (r) (r) and () (r) (¢) are all ergodic .
Moreaver R=M2A2E¢¢T (2.9b)
P=(MEss") " (2.9¢)

Proof. With the ergodicity of o) (1) and (1) p(1)¢" (1) we obtain that
L3 M wnswe o
(51

=ML 887 (1) — MINEddT
t=1

P=(L% Mo(# (D) —=M T (EsT
- =1
Lemma 7(Mcleish’s Theorem, [2]) Let X, ,be a martingale difference array

satisfying
(a) max|X, .| is uniformly bounded in L, norm, i.e., (2.8),
kk,

(b) r}la,len,k‘—P"‘>, i.e., (2.5) and

K, P
() Y X!,—R, i.e., (2.9
K1

thén AsSN (0.R).

Obviously, [H8,-0) =Pr—= 3 $(0) &)
t=1

v’n

Using Mcleish’s Theorem (Lemma 7)and Lemma 4—Lemma 6, we obtain
the following theorem.
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- Theorem |. If the conditions of Lemma 4, Lemma 5 and Lemma 6 are
satisfied then
H(B,-8) AN (0,Q) (2.10)
Q=A"E¢sD) "
Some Conclutions
Theorem1 is more general than that of L jung’s, in the sense where &(r) is a
white noise and E&'(r) is bounded "®. Of course this theorem has improved the
results in''1,
All the assertions mentioned above can also be generalized to the MIMOQO situa-
tion .
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