Remarks on the Asymptotic Normality of Least Squares Estimator for System Identification*

Kuang Honghui and Yuan Zhendong

(East China Normal University, Shanghai)

Abstract

In Yuan's paper [1], we have proved the asymptotic normality of least square estimator in system identification using the central limit theorem for martingales. However, the conditions of [1] are rather harsh. In this artical, we use Mcleish's dependent central limit theorem to improve the above result.

Rest Restatement of the Problem

Consider the following system in regressive form

$$y(t) = \phi^{T}(t)\theta + (t) \tag{1.1}$$

where

$$\theta^{T} = (a_1 a_2 \cdots a_{n_a} b_1 \cdots b_{n_b}) \quad \text{to be estimated}$$

$$\phi^{T}(t) = (-y(t-1) \cdots - y(t-n_a), \ u(t-1), \cdots, \ u(t-n_b)),$$

u(t) and y(t) are the scalar input and output at time t.

Asumptions on the system and noise:

C1: The system (1.1) is strictly causal, i.e., $n_a > n_b$. Morever, y(t) = u(t) = 0, when t < 0.

C2: The all zeros of $A(q^{-1})$ are strictly inside the unit circle.

C 3: $\{\varepsilon(t)\}_{t=0}^{\infty}$ is a martingale difference sequence. If $\mathscr{F}_{n,t}$ denotes the smallest σ -algebra generated by $\varepsilon(0)$, $\varepsilon(1)$, $\cdots \varepsilon(t)$, then $E(\varepsilon(t) \mid \mathscr{F}_{n,t-1}) = 0$ and $E(\varepsilon^2(t) \mid \mathscr{F}_{n,t-1}) = \Lambda_t^2$ for any $t = 1, 2, \cdots, n$.

C4: The 4th moments of $\varepsilon(t)$ is finite, i.e.,

$$E(\varepsilon^{4}(t) \mid \mathcal{F}_{n, t-1}) = \beta_{t}^{4} < \infty \text{ for any } t = 0, 1, 2, \dots$$
 (1.2)

As usual, we assume that u(t) and y(t) are $\mathcal{F}_{n,t}$ measurable, then the following proof will include the closed-loop case.

The criterion function is

$$J_{n} = \frac{1}{n} \sum_{t=1}^{n} M_{t}(Y(t) - \varphi^{T}(t)\theta)^{2}$$
 (1.3)

Received Nov. 20, 1987. This work is a part of the project supported by National Natural Science Foundation of China

where M_i is a weighting function,

The LS estimator of θ is

$$\hat{\theta} = P_n \left(\frac{1}{n} \sum_{t=1}^n M_t \phi(t) Y(t) \right)$$
 (1.4a)

$$P_n^{-1} = \frac{1}{n} \sum_{t=1}^{n} M_t \phi(t) \phi^T(t)$$
 (1.4b)

Introduce some notations,

$$S_{n,k} = \frac{1}{\sqrt{n}} \sum_{t=1}^{n} M_t \phi(t) \varepsilon(t)$$
 (1.5)

With some calculus, we obtain that

$$S_{n,k} = \sqrt{n} P_n^{-1} (\hat{\theta}_n - \theta)$$
 (1.6)

The problem is to discuss the asymptotic distribution of $S_{n,k}$.

Main Results

In order to obtain the asymptotic distribution of $S_{n,k}$, we need the following lemmas.

Lemma 1. If C1 and C2 are held

$$|Eu(t_1)u(t_2)u(t_3)u(t_4)| < r < \infty, \ \forall t_1, t_2, t_3, t_4 \in \mathbb{N}$$
 (2.1)

where r is a constant, then

$$E\bar{y}^4(t) < M_1 < \infty \tag{2.2}$$

here $A(q^{-1})\bar{y}(t) = B(q^{-1})u(t)$ and M_1 is a constant.

Proof. From condition C1, we have

$$y(t) = \sum_{t=1}^{t-1} g_i u(t-i)$$

Hence

$$E\overline{y}^{4}(t) = \left| E \sum_{l_{1}, l_{2}, l_{3}, l_{4}=1}^{t-1} g_{l_{1}}, g_{l_{2}}, g_{l_{3}}, g_{l_{4}} u(t-l_{1}) u(t-l_{2}) u(t-l_{3}) u(t-l_{4}) \right|$$

$$< r(\sum_{i=1}^{t-1} g_{i})^{4} < r(\sum_{i=1}^{\infty} g_{i})^{4} < \infty$$

Lemma 2. If C1, C2, C3, and C4 are held and

$$E\bar{\epsilon}^{4}(t) = \beta_{t}^{4} < W < \infty \tag{2.3}$$

where W is a constant, then

$$E\bar{\epsilon}^{A}(t) < M_{2} \tag{2.4}$$

where $A(q^{-1})\overline{\varepsilon}(t) = \varepsilon(t)$ and M_2 is a constant.

The proof is similar to that of lemma 1.

Lemma 3. If C1, C2, C3, C4, (2.1) and (2.3) are satisfied, then $Ey^4(t) < M$, $\forall t > 0$

where M is a constant.

Proof. From (1.1), we have

$$y^{4}(t) = \left(\frac{B(q^{-1})}{A(q^{-1})}u(t)\right)^{4} + 4\left(\frac{B(q^{-1})}{A(q^{-1})}u(t)\right)^{3}\left(\frac{1}{A(q^{-1})}\varepsilon(t)\right) + 6\left(\frac{B(q^{-1})}{A(q^{-1})}u(t)\right)^{2} \cdot \left(\frac{1}{A(q^{-1})}\varepsilon(t)\right)^{2} + 4\left(\frac{B(q^{-1})}{A(q^{-1})}u(t)\right)\left(\frac{1}{A(q^{-1})}\varepsilon(t)\right)^{3} + \left(\frac{1}{A(q^{-1})}\varepsilon(t)\right)^{4}$$

According to Lemma 1, Lemma 2 and Hölder inequality, we come to the conclusion:

Henceforth if x is a vector (x_i) is the ith element of x), x denotes the vector in which the ith element is x_i .

Lemma 4. If C1, C2, C3, C4, (2.1) and (2.3) are satisfied and $\sup M_s < \delta < \infty$ then,

$$\max_{t \le n} \left| \frac{1}{\sqrt{n}} \phi(t) M_t \varepsilon(t) \right| \xrightarrow{\mathbf{P}} 0, \text{ as, } n \to \infty$$
 (2.5)

here P denotes convergence in probability.

Proof. Let

$$\omega_n = \max_{t < n} \left| \frac{1}{\sqrt{n}} u(t-l) M_t \varepsilon(t) \right| .$$

then for $\lambda > 0$

$$P(\omega_n' > \lambda) < \sum_{t=1}^n P(\frac{1}{\sqrt{n}} u(t-l) M_i \varepsilon(t) | > \lambda)$$

$$< \frac{\delta^4}{\lambda^4 n^2} \sum_{t=1}^n E u^4(t-l) \beta_t^4 < \frac{\delta^4}{\lambda^4 n^2} \sum_{t=1}^n \beta_t^4 - 0, \text{ as } n \to \infty$$

The second inequality helds because of C3, C4 and Markov's inequality. Hence,

$$\omega_n' \xrightarrow{\mathbf{P}} 0$$
, as $n \to \infty$, $l = 1, 2, \dots, n_b$ (2.6)

Let

$$r_n^j = \max_{t \le n} \left| \frac{1}{\sqrt{n}} y_i(t-j) M_t \varepsilon(t) \right|$$

$$P(r_n^i > \lambda) < \sum_{t=1}^n P(\left| \frac{1}{\sqrt{n}} y(t-j) M_t \varepsilon(t) \right| > \lambda)$$

$$< \frac{\delta^4}{\lambda^4 n^2} \sum_{t=1}^n E y^4 (t-j) \beta_t^4 < \frac{\delta^4 M \omega}{\lambda^4 n} > 0, \text{ as } n \to \infty$$

Hence

$$r_n^j \xrightarrow{\mathbf{P}} 0$$
, as $n \to \infty$ $j = 1, 2, \dots, n_a$ (2.7)

From (2.6) and (2.7), we obtain that

$$\max_{t \le n} \left| \frac{1}{\sqrt{n}} \phi(t) M_t \varepsilon(t) \right| \stackrel{\mathbf{P}}{\longrightarrow} 0, \text{ as } n \to \infty$$

The proof is complete.

Lemma 5. All the conditions of Lemma 4 are satisfied, then

$$E(\|\max_{t \le n} \left| \frac{1}{\sqrt{n}} \phi(t) M_t \varepsilon(t) \right| \|)^2 \le T < \infty$$
 (2.8)

where denotes Euclid norm and T is a constant.

Proof. Since

$$E(w_n^l)^2 < \frac{1}{n} \sum_{t=1}^n E^{n^2} u(t-l) M_t^2 \varepsilon^2(t) < \delta^2 \sqrt{r} W = T_1 < \infty$$

$$\forall l = 1, 2, \dots, n_h$$

and

$$E(r_n^j)^2 \le \frac{\delta^2}{n} \sum_{t=1}^n Er^2(t-j) \Lambda_t^2 \qquad j=1,2,\dots, n_a$$

$$\le \delta^2 \sqrt{MW} = T_2 \le \infty$$

$$T = \max \{T_1, T_2\}$$

then we obtain (2.8).

Lemma 6. If C1, C2, C3 and C4 are satisfied and

$$M_1 = M$$
, $\Lambda_1^2 = \Lambda^2$

then

$$\frac{1}{n} \sum_{t=1}^{n} M^{2} \phi(t) \phi^{T}(t) \varepsilon^{2}(t) \longrightarrow R, \quad \text{as } n \to \infty$$

$$P_{n} \longrightarrow P, \quad \text{as } n \to \infty$$

$$(2.9a)$$

provided that (t) (t) and (t) (t) (t) are all ergodic.

Moreover

$$R = M^2 \Lambda^2 E \phi \phi^T \tag{2.9b}$$

$$\mathbf{P} = (\mathbf{M} \mathbf{E} \boldsymbol{\phi} \boldsymbol{\phi}^T)^{-1} \tag{2.9c}$$

Proof. With the ergodicity of $\phi(t)\phi^T(t)$ and $\varepsilon^2(t)\phi(t)\phi^T(t)$ we obtain that

$$\frac{1}{n} \sum_{t=1}^{n} M^{2} \varepsilon^{2}(t) \phi(t) \phi^{T}(t)$$

$$= M^{2} \cdot \frac{1}{n} \sum_{t=1}^{n} \varepsilon^{2}(t) \phi(t) \phi^{T}(t) \longrightarrow M^{2} \Lambda^{2} E \phi \phi^{T}$$

$$P_{n} = \left(\frac{1}{n} \sum_{t=1}^{n} M \phi(t) \phi^{T}(t)\right)^{-1} \longrightarrow M^{-1} (E \phi \phi^{T})^{-1}$$

Lemma 7 (Mcleish's Theorem, [2]) Let $X_{n,k}$ be a martingale difference array satisfying

- (a) $\max_{k \le k} |X_{n,k}|$ is uniformly bounded in L_2 norm, i.e., (2.8),
- (b) $\max_{k \le k} |X_{n,k}| \xrightarrow{\mathbf{P}} 0$, i.e., (2.5) and

(c)
$$\sum_{k=1}^{k} X_{n,k}^2 \frac{P}{R}$$
, i.e., (2.9)

then AsN(0,R).

Obviously,
$$\sqrt{n}(\hat{\theta}_n - \theta) = P_n \cdot \frac{1}{\sqrt{n}} \sum_{t=1}^n \phi(t) \varepsilon(t)$$

Using Mcleish's Theorem (Lemma 7) and Lemma 4—Lemma 6, we obtain the following theorem.

Theorem !. If the conditions of Lemma 4, Lemma 5 and Lemma 6 are satisfied then

$$(2.10)$$

$$O = \Lambda^{2} (E\phi\phi^{T})^{-1}$$

Some Conclutions

Theorem 1 is more general than that of Ljung's, in the sense where $\varepsilon(t)$ is a white noise and $\mathrm{E}\varepsilon^4(t)$ is bounded [3]. Of course this theorem has improved the results in [1].

All the assertions mentioned above can also be generalized to the MIMO situation.

References

- [1] Yuan Zhen Dong (1982), Journal of Mathematical Research and Exposition, Vol.2 No.3, 71—78.
- [2] D. L. Mcleish (1974), The Anuals of Prob. Vol.2 No.4, pp. 620-628.
- [3] L. Ljung and Soderstrom (1983), Theory and Practice of Recursive Identification, MIT Press.

系统辨识中LS估计的渐近正态性的注记

邝洪晖 袁震东

(华东师范大学数学系,上海)

埣 車

文献[1]中,我们用有关鞅的中心极限定理,证明了系统辨识中LS估计的渐近正态性。然而[1]中的条件是苛刻的。本文利用Mcleish的相依变量的中心极限定理改进了[1]的结果。