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An Application of Necessary and
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In singularity theory and catastrophe theory of germs of C~ functions, many
fundamental problems deal with computation of a basis of an arbitrary comple-
mentary space of an ideal of finite condimension in E,, which is a ring consis
ting of all germs of C” functions in n variables. For example, J.N. Mather has
proved the following fundamental theorem with respect to universal deformation
of a germ of finite codimension:Let fe¢E, be a germ of finite codmension, Then
a p-parameter deformation F of f is universal, if and only if its initial speeds
are sich that

J()+R{F ,F, o, F,}=E, .
This means that if a p-parameter universal deformation of f is to be found
out, we need only'to find out a basis of complementary spacé of J(f) in E,.
Where J(f) denotes the Jacobian ideal of f.

However, in the course of practical computation, it often makes troubles.
But in the published literatures'we seldom see something concerning with it and
introducing it. In [ 3 J(p.13-p.15), several examples have bgen given and made
computation by a diagram. But we must point out that (i) The generators in the
enumerated examples in the paper are all simplest -monomials. The concerned
variables are only two. (ii) In the paper, the general principle that computes
the problem is not cohcerned, and such diagram can not be drawn when the -
number of variables >3, For the more complicated generators, for instance poly-
nomials, the diagram is no longer suitable. Starting from aproposition of ¢-equi-
valence which has been given by J.N.Mather in [ 2 ], this article will use some
algebraic knowledge to draw some theorems and principles of computing the pro-
blem. Finally, it will also give some pratical examples for explaination,

§ (. Preliminaries and symbols

{1) The set of all homogeneous polynomials of degree K in n variables is
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denoted by Pf; Obviously, this is a vector space over R, InP,,K, all different mo -
nomials with coefficient 1 form a basis in the space. Henceforth, we shall call
canonical basis in this paper.

{2) Let I be an ideal in E,. The unique maximal ideal of E, is denoted
by MCE,. I,=I/M*" =J"(I)CE,/M*" denotes the projection of I into JX. Then
M*CI is equivalent to I, DOM*/M*" =Py},

(3> Assume that I is an ideal in E,. then the following propositions are
equivalent,

a) I is finite codimensional in E, as a vector space over R.

b) There exists a no'nvnegative integer K such that I OM¥X.

In this paper, except those specially stipulated, the symbols are the same as
those in [1]. ‘

§2. The main results

J.N.Mather has proved the following proposition in [ 2 ];

If f, geF, then the following conditions are equivalent,

a) f is in the same ¢ -orbit as g.

by 1(f) =1(g}).

¢) There exists an invertible px p matrix (u;) such that o= Z:u,.jg'(yj).
Where, u, eC(N),. :

d) There exists an invertible C* map-germ H|(Nx P, § xy) =identity and
H (graph f) =graph g.

Where, N and P are differentiable manifolds, S is a finite subset of N, ye
P, F denotes the set of all C” map-germs f: (N,S)—(P, y), From this, we
can directly conclude that

Lemma |. Assume that 7' and 7%’ are two finitely generated ideals in
E;I V=01, fyyoey )y 1'% =0g,,8,,,8,), then I''’ =127 if and only if
there exists an invertible matrix U = w,) in E, (u,€E, i,j=1,2,+, m) such that

A &
f:Z =(uy) gzz
L Em

Theorem |. Assume that I is a finitely generated ideal in E:I=(f,f
-, f ], and it has finite codimension: IDOM¥ (suppose that K is smallest natural
integer satisfying the relation). Then [fl,fz,"',f,,,]:[j'(ﬁ’jxj‘"z,---,ijm]. Where,
j'ﬁf,. is the Taylor polynomial of f, up to degree K.

Proof. Assume that f;:iji+gi, then g,eM*™ Moreover, IDOM". There-

fore, M-IDM'“l .
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- m m
. K
From this, g, = j§:1c,jfj , Where, ¢, eM. Therefore, f =j"f+ ,Z:l: c,ti i.e.,

fiq %A
! .K

(E- (c,)) f;z = 7 :fz

f Ji*fa

(Where, E is an nxn identity matrix) .

Note that (E- (c,;)] is an invertible matrix in E,. By Lemmal, we have

[J‘l‘yfz""yf,,,] :.ijf;,jxfz9 hatd 9.I:Kf,,.] .
The theorem points out that any finitely generated and finite codimensional
ideal in E, can be replaced by an ideal whose -generators are all polynomials

- for the relavent computations.
Assume that 7 is a finitely generated ideal: I =(f,, f,, ", f, J.

Theorem 2.
(i) Write the set consisting of all invertible germs in E, as V,.
If heV, (j=1,2,%,m), then (fy, fy,o fI=CSso b fisoees £LA=Ch Sy b S,
e, b f.]. :
(ii) If heE,, then (S}, fr,000 £, I=0S 150y (Bf+ 1)y oo, £, 3. (G£ED)
(iit) If heE, and h(0)# - 1,then [ fi, [y, f,)=0f 00y (BSi+ f)ye 1],
Proof. (i) If h,eV,, then the matries
1

I I A I

and H,= h,

1 L B

are invertible in E,. But, (f;, e, f;, e, f,)=0f,h f;, =, f,] is equivalent to

Sy .
h.lj; =H, {2 |
/, T

Chyoren fsones £,)=Chy £y yooes by £y ooy b S

is equipalent to

h hlf; fl
mty g |

L
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By lemmal, we know that (i) is true. (ii) and (iii): Similarly to (i), we need

only to notece that the following matries
1 ses ()} ooe

I.: l O ¢ 1 200
. irow ‘

irow (heE))

eee O voo b= see =
—gee X ese O

.

.

L

O 0oe 0 oo 0 von 1
Jjcolumn J column

Pt 900 O s00 D w0 O

0

and 1 O
REY (h¢E,, h(0)# 1)
1
are all invertible in E
Henceforth, the above operations will be called’elementary transformations”
of a finitely generated ideal in E,. When the operations are used, special atten-
tion should be paid that the designative ranges of A. Can’t be used at random.
Corollary |. Assume that I=(f,f,,+ f,]), then the following conditions
are equivalent:
(1) gelhis froe [0l
(it) (A, fy5°% f,) can be obtained from (f, f;,*, f,, &) by performing a
series of the “elementary transformations”. '
Corollary 2. Assume that = [f,l,fz,m,fm J, geM-I, then Ef,,j;,---, [l =
[fl ...’fi+g, oty Sl .

In fact, if geM-I, i.e. g= )_ﬂ_: h,f,, heM, Hence, I can be obtained from
=1

Cfiseess fi+ 8,0, f,,] by performing a series of the “elementary transformations”.

The simple form of generators is very useful for the computations., Howe-
ver, theorem 2 and its corollaries are simple and important tools for the reali-
zation of the aim. Some examples can be seen in § 3.

Assume that [ is an ideal of finite codimension in E,. Consider the sequence
of nested ideals: vE,,DI +MDI + M*.DI + M*. Suppose the codimension of (I +
M™) in (I+M') is C, (0<r<K-1), then the codimension of I in E, is Equal
to Cyp+Ci+ee+Cp, .

Lemma 2. C, is the codimension of (I,N\P)) in P,.

Proof. Since C,=dim,(I+M")/(I+M""). Moreover.

(T+M)/T+M™M)=T+M™)+ M /U+M™)=M"/UT+M"" )M’
=M /M7 CA+MTYNM /M) = (M) /i CA+M™ ) M)
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=Pl/j" (HU+M"™" )M )=P,/(I,NP).
T herefore, C,=dim(I+M")/(I+M"™) *dlmRP /U,NPF,).
Lemma 3. I (P, is a R-subspace in P).
Proof. 1t is clear.
Theorem 3. Suppose that I is an ideal of finite codimension in E,, then
E,/I as a vector space over R has the following decomposition of the direct

hof ———— _—
sum; E /I=¢@ I NP,). Where, (I \P}) is a complementary subspace of I,
r=y
P’ in P, .
Proof. By lemma 2, we know that the complementary sabspace of I, P,
in P! is just a complementary subspace of (I +M'™) in (I+M').

Therefore, (1+M'*‘)e}9(1 NPH=U+M").
From this, = (I, NPOYDUT+M) = I,NPHDU,NPHDUT +M?)

:...:r@)(lrmpz)ea(l_'_Mx).
But I+M¥=1I (Because IDOM¥).

kel ———— oy ——————
Hence, E,,=@;(I,HP;)®I, ie. E/I=8W,NP)

It is known from the linear algebra that: The complementary subspace of .
(I,NP;,) in P, is not unique. In same space, we may choose different basis
too. Our problem is to find out a basis of an arbitrary complementary subspace
of I,NP, in P,. Without loss of generality, suppose that I,NP’ is such a com-.
plementary subspace of I,N\P, in P,, it has a basis which al 1 consist of some

elememts of the canonical basis in P,. Thus, k@" (I,NP,) will such a com

r=p

plementary subspace of finite codimension in E, ; It has a basis which all co -
sist of some elements of the canonical basis. Our aim is to find out the basis.
Theorcm 4. Assume that the above mentioned basis in IoﬂPg , IlﬂP:,,---,
I_ NP, have obtained, and its direct sum is written as R{g,,g,,*&,}, then an
element of the canonical basis in P/ (where r<<K-1) is a basis element in
I,NP,, if and only if the element no belongs to IPR{g ,g,,,8,}.

y k=t ———
Proof. (i) The necessity; By theorem 3, we have E,= @ (I,NP)PI=ID
r=0

Rig,, 815,28, BUNPYDDU, NP ).

If ¢ is a canonical basis element and ¢ is also a basis element of I.NP,).
Obviously, ¢ €IDR{g,,8,,°*8,!}.

(ii) The sufficiency: Indeed, IDR{g,,&,,,8,} = PyDP.D--DP; " DU NP,
DD U, NPEHDM" .
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I & is a canonical basis element in P, (i.e., ¢ is a monomial of degree r with
wrefficient 1) and

¢EIDRg, ,8,,,8,) .
Then it is easy to know that the above conditions are equivalent to that the
projection of ¢ into IPR{g,,&,,*, g} is zero. Moreover, by E,=IPDR{g,,&,,
w8, SULCP@BU,NPEY), we know that ¢e(,NPYDHU,. NP DD

(I._. ~ P’ 7). But, the projections of ¢ into (I,,,NP.,™), I, ,NPX") respec-

"

tively are all! zero. Therefore, ﬁ(ﬁ).
Because the considered basis elements of (I,(\P,) are some elements of
the canonical basis in P} . .
From this, ¢ is certainly a basis element of (I,NP)). '
Corollary 3. Arbitrary a canonical basis element in P] belongs to IEBR

Ay AR AN

Proof. By IDR{g, ,8;,,8,} = P2OP, D PP, DU NPID DU, (1P
5M %, We may directly conclude the result.

When we find a basis of (I,ﬂP,f),M(I,ﬁP;) can be again regarded as a
direct sum of all 1-dimensional subspaces generated byevery basis element.

Thus, if we have determined ¢ gR{g,,g,,,&,}, then ¢ is found a basis ele-
ment of (I,NP,), Next, we should add ¢ to Rig,,g,,+,g,} and obtain IHR
{€,.8;5*,8,,¢}. Based on the result, over again consider such canonical ba-
sis element which no belongs to IDR{g,,&,,*,&,, ¢}. In this manner, step by
step, we may find out a basis of (I,P,). Sometimes, there are some diffi-
culties to directly use theorem 4., For the convenience of observation and com-
putation, it is necessary to draw the following definitions and theorems.

Definition |. Let f¢E,. For any given integer r>>0, j' "' f will be called
lower degre e parts of the degree <r of f. (f—j"'f) will be called higher -
degree parts of the degree >r of f and written as H'f. (If r=(, naturaly
Jtr=Lo).

Definition 2. Let ¢ be a canonical basis element in P/ for given integer
r=>0, feE,. If thereis a germ n¢E, such that the term of ¢ appears in theTay-
lor expanxion of f-n(i .e., the coefficient of the term is not zero), then f
will be called a germ possibly generating ¢£.

Theorem 5. Let ¢ is a canonical basis element in P,, I is a finite genera-
ted and finite codimesional ideal: I=(¥¢,,¥,, 8,0, 550, ).(Where, §,,4,,°,
¥, are all of the germs possiby generating ¢ in the generators of I), then ¢ef
(DRig,, &5, &, if and only if there are polynomials My sMys*ess N, such that

q —
(i) H'(Y n,j*"s,) contains the term of ¢
i=]
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- (i.e., the coeffocient of the term is not zero)
q
(it) (H'(Y n,j*"¢,)—the term of ¢}el.
i=1
Proof. The sufficiency:; Since

q q . q . q
Zl”i'/)i: P ”i(jK 1'/’1+HK’/’:'): 2. '7in lwi+ ZlﬂiHK i .
i= =1 i=

i=1

obviously
q q
Simwel, 3 nHpeM*CI.
i=1 i=]
Therefore
g kA
n.J- el
’ i=1
Moreover
4 LK1 ar—-1 i K- r 7 K1
21'7,-1 ¥, =J (-21 n;J 1/),-)+H(_Z1 nJe ¥ .
1= i= i=

By corollary 3, we know that

—] q — ’
jrl(zlﬂin llb,)EI@R{gl,gz’""gs)-
i=

Thereby

q
H'( Zl ”in—llwi) GI@R{gl ’gzy'"’g,)

q q
Therefore, the term of ¢=(), ”ijxdll/)'.) O N AR BE
i=1 i=1

P q P
ha ~{H'(3 1,j*"¢,) —the term of ¢}eIDR{g,,8,,*,8,}.
e
The necessity: Let ¢ is a canonical basis element in P, and (<JDR{g,,g,,**,8&,!}.
Note tnat the projection of ¢ into R{g, g,,-,g,} is zero, thereby Sel.
q m-4 .
From this ¢=Y hy,+ Y Pe;Por; . Therefore
i=1 i1
q m—9q
2 hi'/)i —§=- Z hq+j¢q+jel’
i=1 i :
Hence
rK-, o R = R |
H'(j"( :Z:l h, SN =H(-j " ( Zlhq+,<p,,¢,))
- =
~ o1 m4 x ;"
- { 21 hv +1 ‘pqw‘_ J (]Zi hq+1’¢¢+i) -H ( '21 hﬂ*lq’q*fj)}(I@R{gl’gZ’""gs}
~— I= = ji=

. m-q

Note that the projection of H'(-j*"(X h_ o,.,)) into Rig ,g,,*,8,} is zero.
j=1

Therefore,
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H'( -j"“'("j'glqh,,+j¢w. el .
Thereby {H’(j"“‘(i‘éhiw,)) -¢)el.  But
HG O b)) = BTG S 7 hy 1780)
=L e B )

q » y q ) ]
:H’(iz_:ljx lh,'jK 1¢’i)_HK( gjx lh',.'jk |¢i).

. P .K-1 K
Obviously HYCY J" hi-j" yp)eM I,

i=1

Therefore, the relation {H’(j"'"'(f;ql hy)) - ¢hel is equivalent to  {H'( fq_']lj"“‘h,'
= =
jK“';ﬁ,) -¢tel. we need only take g, =j"“h,. (i=1,2,"9).

From theorem 5 and the above proof, we can see that: For any finitely ge-
nerated and finite codimensional ideal I in E, and any canonical basis element
¢ in P, we want to determine ¢e¢l DR{g,,g,,°,8,}, that is equivalent to deter
mine ¢el. If there are difficulties to directly determine ¢¢I, then instead the
conditions (i) and (ii) of theorem 5 can be used. All oprations need only to
be considered in the range of polynomials.

§3. The computing examples

Example |. Assume that f,(x), f,(x,), -, f,(x,) are polynomials in x, , X»
. K, K K .
see, x, respectively, x;',x,%, -+, x," are terms of the lowest degree in f (x,),
(%), 0, fi(x,) respectively. Then (£, f;,*, f,) = [xf‘ , X33, e, x5,
Indeed, f,(x,)zxf'h,(x,.)(i=1,2,---, n), h,(x,) is an element of V,. By (i)

in theorem 2, we can obtain the result,
n
Example 2. Assume that every generator f, =3 h,g, in (f, f,,*, f,]. for
i=1

all i=1,2,%,n, h,eV, . When j>i(or j<i), h, M. Then Ui fes £,)=08,,8,,
e, 8] '

Obviously, this can be concluded directly from lemma 1, Because in this
case, (h,;(0)) is an upper triangular matrix or a lower triangular. All element
on the principal diagonal are not zero. Hence, the matrix (4,;) is a. invertible

matrix in E,.
) [€)] (€3]

In particularly, if every f is a polynomial as the from x|' +x7° + e +x)"
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- and
. ( (2) i ((1) p(3) (n)
m{V <min{m{?’,ee, m{®}, mi? <min{mi'’, m3’, eee, m}’ }oee,

. i- I+ M) i (1) p(2) (n-1)
mP<min{m{V, e, m! "V m{I*V e m™ Y 000, mP <min{m, m?, e, M7V},

then
m(1) (2) min?
Ef;9f2,""f;.]:[x|' s x’;z sy X" J.
7 3 7
For example (x*+ "+ 2 X+ y*+ 2 X+ 8+ 2) = (x4, 2.

In the above every f,, if it absents some terms, but what it absents is not
(3]
x7" , In this case,
; m(l) m(z) m(")

we still have; Chisfasoess [L=0X0 5, X0 e, X"

For example (x2+y°,y?+2% 22+ x*)=(x?, y?, 2%]).

Example 3. f. (R>, 0)—>(R,0)

(x, y) F=x*y* +sinxy.

Finding an universal deformation of f.

Solution: Since —g}—{— =3x%y* + ycosxy, —35— =2x’y + xcosxy. Therefore

J() =E—3-£—, —%—] =(3x2y*+ ycosxy, 2x’y + xcosxy)
=[y(cosxy+3x2y), x(cosxy +2x2y)].
Because (cosxy+ 3x’y) and (cosxy+2x2y) are invetrible in E,, by (i) of
theorem 2, obtain;

J(f)=0(x, y]
From this, . J(HHr+R{1}=E, .
Hence, 1-parameter universal deformation of f is F(x, y,t) =x3y+sinxy+t .
- Example 4. Assume that (f, f,J=(xy+x*y+y° y*+x’+x)»’] Finding a ba-

sis of complementary space of (f,f,) in E,.
Solution. . ([ f,, f,0=(4 -5, 5 =[xy+x"y—x3y4-xy7, y2+.1r3 +xy*)
=(xy(1-x=x"y’ - y*), Y+ X+ xy’ ) =[xy, y + x° + ")
=Ly, ¥ +x7).
We now compute a basis of complgmentary space of I in E,(i.e., E, ):
It is easy to know that (I,N\PO@ (I,NPY) = R{l,x, y).
Consider the canonial basis in P;: xz,xy, yi.

Obviously, xz‘éIEBR{l,x, y}. by theorem 4, x* should be a canonical basis
element of (I,N\P2). Thus, we obtain IPR{1,x, y, x*}. But, xyeICIDR{1,x,
y, x*}. Hence, xy is not a basis element of (I,NP.).

-~ The term y?: In the generators of I, (yz+x3) is the only germ that possibly
‘ generates y’.
By theorem 5, It depends on whether x? belongs to I as to whether y? be-
long to IOR{1,x, y,xz} or not, But x"él. In fact, if x*¢I, then there are poly-
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nomials #,(x, y), n,(x, y) such that x’zn,(x, P+ x) t1(x, y)xy. Set x=0, we
have r],(O,y)yZEO. Hence 7#,(x, y) = x-n;(x, v). Therefore x’zxni(x, WP Ext) +
n,(x, y)xy. Namely x’=n(x, y)(y*+x*) +n,(x, y)y. Hence x*(y’+x’, yJ=(x’,
»). That is impossible. From this, y* should be a basis element of (I,\P2).
Thus we obtain IBR!1,x, y, x*, y*}.

Seocndly, consider the basis of (I3OP;); In the generators of 7. (y2+x3)
is the unique generator possibly generating x’. By corollary 3,y2 can be not
considered, because y’¢R{1,x, y,xz,yz} But, in (y*+x’), the parts of the degree
>3 do not contain x* and ane (el. From this, we know that x’¢ IdR{1,x, y, x’
¥

Again

b

Xyl CIPR{L, x, ¥, x°, ¥,
xy e CIBRI, x, v, x7, ¥2) .

Finally, consider y’; In the generators of I. (y2+x3) is the only generator
possibly generating y’. However y(y’+x’) =y’+xy and includes y°, also x’y=
x*(xy)el. Therefore y'eIDBR{1,x,y, x>, y*}.

It is easy to know that IDOM* . Therefore,

IDR{1, x, y, xz,yz} =E, =E,.

Example 5. Assume that I:[xy+y°, x3+xy3], Finding a basis of comple
mentary space of I in E,.

I is finite codimensional in E,: It is only necessary to show that there are
natural integers m, and m, such that x™e/ and »™el. In fact, x'eI, y’el. Be-
cause x(x3+xy3) contains x4, Hence x*¢I if and only if x2y3el.

Assume that x2y3zc1(x, ¥)(xy+y*) +c2(x,y)(x3 + xy3).

Set x =0, we obtain c,(O,y)y6EO. Therefore ¢,(0,y)=0. From this, c (x, y)
= xc:(x, ).

Similarly, set y =0, we have c,(x,») =yc;(x, y). Hence,

x*y’ =c:(x, y)(x+y5)xy+c;(x2+y3)xy,
Namely
" xyzzc',(x,y)(x+y5)+clz(x,y)(x2+y3).
This implies that
xyze[x+y5, xt+ .
But
Cx+y’, x?+y ) =(x+)°, ' - x)/ ) =x+ 5", y' (- xpH)
=(x+y°,y)=0x, 7.

Obviously, xy’e(x, y°) By means of the result, we have x*I.

Similarly we may prove that y°¢I.

In the following, we shall compute a basis of complementary space of I in
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Obviously,

I,NPYBU,NPYHU,NP;) = R{1,x, y, x*, xy, y*}.

Examine every canonical basis element in P one by one: Because (x’+xy’
is a generator of I, hence, it depends on whether xy3 belongs to I as to whe-
ther x° belongs to IHR{1,x, y, x*, xy, y*} or not. |

If nyGI, then

xy'=c (x, y)(x+ yHy+e,(x) »)(xT+ y)x.
Set x=0, we conclude that ¢, (x, y) =xc';(x, y)
y=0, then c,(x, y)=yc;(x, y).
Therefore
xy =c{(x, »)xy(x+y*) +cilx, ) xy(x’+y*),
yizel(x, ) (x+y*) +ehlx, ) (x2+y)

yielx+y', x*+y)=0x, »*2.
That is impossible. Hence,
*ZIPR(1,x, y, x*, xy, y*).
Adding x’ to R{1,x, y, xz,xy, y*}, we obtain
IPR{1,x, y, x*, xy, ¥y, x}.
Similarly x:ye ICIDR{1, x, v, X2, xy, ¥2, x°),
xy e IPR(1,x, y, x>, xy, ¥4, x*}.
Again adding xy* to IPRI{1,x, y, x% xy, y%, x*}, we obtain
IBR{L, x, y, x2, xy, ¥*, x°, xp?).
But y3e_IEBR{1,x,’y, x*, xy, y%, x°, xy*}, Hence,

h ISU,NPHSUNPHDUI,NPHD U, NP
=IDR{1,x, y, x*, xy, ¥°, %, xy%, ')
Continuing to compute in the same method, we abtain/
IPDR{1,x, y, xz, XY, y2, x3, xy?, y3, xy3, vy = E,  =E,.
Example §. Assume that
I=(x*+xyz2+ 322+ 2% Yy +zy +xty, xyz+xp*).

In the process of performing “elementary transformations”, we appoint that
the first, second, third generator of the ideal denotes by (1), (2), (3) res-
pectively. Thus

I (2)—aryx(1)Ex:4+ xyzz+ y322+~26’ y2+zy2— xzyzzz—xy4zz—xyz6, xyz + xy3]
- z x(3)+<2)Ex3+xyzz+ y’zz+z(’, y2+zy2—x2y222—xy422+xy3zs, xyz+xy*)

2 2_2 5 3
=[x3+xyz +y322+26, y2(1+z—xzzz—xy Z°+xyZ), xyz+xy’)
6 2 ! 3
= +xyzt+y’ 20+ 2%, p% xyz + xy)

=(x’ +xyzi+ 2%y xyz) = (X0 + 2% )%, xyz).
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It is easy to show that x"&7 for all natural integers m. From this, we can
further conclude that I is infinite codimensional in E, . (i.e.E;).

The author is grate ful to Prof. Li Peixin of the Institute of Mathematics of
the Academy of Sciences of China, who have made paluable suggestion and read

the final manuscript of this paper .
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#EC” BYFHASBRARE D, REEAFEHRB 7 A% Tl BYFERE, DA
RGBT —HE R—AENTTH. S N. Maffler 3 H B R4%H BHF Kuniversal
deformation jiF 8§ T‘F;‘ZBEZF%E: S B —Ap——2 ¥ Hdeformation & universal, 2 H
Y EHRPEE F, (i=1,2,-, p)#8:

Jf)+R{F,, F,, e, F)=E, .

XEWE, HERSMW—4P—2¥Muniversal deformation KBk, RER f K
BB (N EE, PP HZ R —HER K,

BE, ERTBEEEEREE. WEHBROCRIXBINAB. XRI3 1(p.13—p.15)
ETHHHE TABREREGTHE. ALHEE: O ECEHEMN, tRTRERFTRMEE
—BgR, WRHELTREEAS. () XPHRRAHTERX-REN—RFEN, HXHEH

B, YTt >3, CEEEH. WEER-ANERT, PSRN, BAEER.

FXHN ¢ - EMORBREH—AOBHEL, FAFZSREMIR, 51 3R
AN . BE, 260mElse .
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