Some Remarks on the k - Uniformly Convexity and k-Uniformly Smoothness*

Nan Chaoxun

(Dept.Math., Anhui Normal University, Wuhu)

Introduction. In [2], V.I. Istratescu discussed the k-uniformly convex space. Let us recall that a Banach space X is said to be k-uniformly convex (k > 1) if for every $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if x_1, \dots, x_k are vectors in the closed unit ball with $||x_n - x_m|| > \varepsilon$ for $n \neq m$, then $||x_1 + \dots + x_k|| < k(1 - \delta(\varepsilon))$. In [4], Jong Sook Bae and Sung Kyu Choi have proved that the k-uniformly convexity is equivalent to uniformly convexity, hence the k-uniformly convexity is not a new notion. In [3], Istratescu also introduced another k-uniform mly convexity. A Banach space is called the k-uniformly cokvex if for every $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that whenever (x_i) , (y_i) , $i = 1, \dots, k$, are vectors

in the closed unit ball of X and $\sum_{i=1}^{k} ||x_i - y_i|| > \varepsilon$, then

$$||x_1 + \cdots + x_k + y_1 + \cdots + y_k|| \leq 2 k (1 - \delta(\varepsilon)).$$

The function $\delta_{k,\chi}(t) = \inf \{1 - (1/2k) \|x_1 + \dots + x_k + y_1 + \dots + y_k \|: \sum_{i=1}^k \|x_i - y_i\| > t \}$ is called the k-modulus of convexity of X.

Let $2 k \rho_{k,X}(s) = \sup \{ \sum_{i=1}^{k} (\|x + sy_i\| + \|x - sy_i\|) - 2k : \|x\| = \|y_i\| = 1 \}$, the function $\rho_{k,X}(s)$ is called the k-modulus of smoothness of X.

A Banach space X is called k-uniformly smooth if $\rho_{k,X}(s) \rightarrow 0$ as $s \rightarrow 0$. Istratescu have proved that for any Banach space the following relation holds

$$\rho_{k,x}^*(s) = \sup \left\{ \frac{st}{2k} - \delta_{k,x}(t) \right\}$$

In this note, we prove that the above k-uniformly convexity also equivalent to uniformly convexity, and x is k-uniformly smooth if and only if X is unifformly smooth.

Theorem | Let X be a Banach space, then X is k-uniformly convex if and only if X is uniformly convex.

Proof If X is a uniformly convex Banach space, $\varepsilon > 0, x_1, \dots, x_k, y_1, \dots, y_k$ •Received May 9, 1988.

are in $U(X) = \{x \in X : ||x|| \le 1\}$ and $\sum_{i=1}^{k} ||x_i - y_i|| \ge \epsilon$, then there exists i_0 (we may assume that $i_0 = 1$) such that $||x_1 - y_1|| \ge \epsilon/k$. For the ϵ/k , by the uniformly convexity of X, there is a $\delta'(\epsilon/k) = \delta(\epsilon)$ such that $||x_1 + y_1|| \le 2(1 - \delta(\epsilon))$, therefore $||x_1 + \cdots + x_k + y_1 + \cdots + y_k|| \le ||x_1 + y_1|| + ||x_2|| + \cdots + ||x_k|| + ||y_2|| + \cdots + ||y_k|| \le 2(1 - \delta(\epsilon)) + 2k - 2 = 2k(1 - \delta(\epsilon)/2k)$.

Hence X is k-uniformly convex.

Conversely, if X is k-uniformly convex and $\varepsilon > 0$ is given. Let $x, y \in U(X)$,

$$\|x-y\| \gg \varepsilon$$
. Take $x_1 = x_2 = \cdots = x_k = x$, $y_1 = y_2 = \cdots = y_k = y$, then $\sum_{i=1}^k \|x_i - y_i\| \gg k\varepsilon$,

by the k-uniformly convexity of X, we have

$$|k||x+y|| = ||x_1+\cdots+x_k+y_1+\cdots+y_k|| \leq 2k(1-\delta(k\varepsilon))$$

so

$$||x+y|| \leq 2(1-\delta(k\varepsilon)),$$

This prove that X is uniformly convex.

Theorem 2 Let X be a Banach space, $\delta_X(\varepsilon)$ and $\delta_{k,X}(\varepsilon)$ be respectively the modulus and k-modulus of convexity of X, then

$$\delta_{x}(\varepsilon)/k \leq \delta_{k,x}(k\varepsilon) \leq \delta_{x}(\varepsilon)$$
.

Proof Let $\varepsilon > 0$, x_1 , $y_1 \in U(X)$, then for any $\{x_2, \dots, x_k, y_2, \dots, y_k\} \subset U(X)$, $\sum_{i=1}^k \|x_i - y_i\| > k\varepsilon$ implies

$$\delta_{k,X}(k\varepsilon) \leq 1 - (1/2k) \|x_1 + \cdots + x_k + y_1 + \cdots + y_k\|$$

In particular, for $x_2 = \cdots = x_k = x_1$, $y_2 = \cdots = y_k = y_1$, we have

$$\delta_{k, \chi}(k\varepsilon) \leq 1 - (1/2k) \|kx_1 + ky_1\| = 1 - \frac{1}{2} \|x_1 + y_1\|$$

Thus

$$. \quad \delta_{k, X}(k\varepsilon) \leqslant \inf \left\{ 1 - \frac{1}{2} \mid \mid x + y \mid \mid : x, y \in U(X), \mid \mid x - y \mid \mid \gg \varepsilon \right\} = \delta_{X}(\varepsilon).$$

Now assume that $x_1, \dots, x_k, y_1, \dots, y_k$ are in U(X) and $\sum_{i=1}^k \|x_i - y_i\| > k\varepsilon$. Then there exists i (we may assume that i = 1) such that $\|x_1 - y_1\| > \varepsilon$. Note that

$$1 + \frac{1}{2} \| x_1 + \dots + x_k + y_1 + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| + \dots + y_k \| \le 1 + \frac{1}{2} \| x_1 + y_1 \| + \dots + y_k \| + \dots + y_k$$

$$\frac{\|x_2\| + \cdots + \|x_k\| + \|y_2\| + \cdots + \|y_k\|}{2} \le 1 + \frac{1}{2} \|x_1 + y_1\| + \frac{2k-2}{2} = k + \frac{1}{2} \|x_1 + y_1\|,$$

which implies

$$\frac{1}{k}(1 - \frac{1}{2} \| x_1 + y_1 \|) \le 1 - \frac{1}{2k} \| x_1 + \dots + x_k + y_1 + \dots + y_k \|$$

$$- 48 -$$

therefore

$$\frac{1}{k}\delta_{X}(\varepsilon) \leqslant 1 - \frac{1}{2k} \parallel x_{1} + \dots + x_{k} + y_{1} + \dots + y_{k} \parallel$$

Thus

$$\frac{1}{k}\delta_{X}(\varepsilon) \leqslant \delta_{k,X}(k\varepsilon),$$

the proof is end.

We recall that a Banach space X is said to be uniformly smooth if for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $x, y \in X \parallel x \parallel = 1$ and $\parallel y \parallel < \delta$ then

$$||x+y|| + ||x-y|| < 2 + \varepsilon ||y||$$

The function $\rho_X(\tau) = \sup \{ \| \frac{x+y}{2} \| + \| \frac{x-y}{2} \| - 1 : \| x \| = 1, \| y \| = \tau \}$ is called the

modulus of smoothness of X. It is well known that X is uniformly smooth if and only if $\rho_X(\tau)/\tau \to 0$ as $\tau \to 0$.

Theorem 3 For any Banach space X, we have

$$\rho_{X}(\tau) = \rho_{k,X}(\tau)$$
.

Proof Let $\tau > 0$, x, $y \in X$, ||x|| = 1 and $||y|| = \tau$. Set $z_1 = y/\tau$, then $||z_1|| = 1$ Now take $z_2 = \cdots z_k = z_1$, then

$$\sum_{i=1}^{k} (\|x + \tau z_i\| + \|x - \tau z_i\|) - 2k = k(\|x + y\| + \|x - y\| - 2)$$

$$= 2k(\|\frac{x + y}{2}\| + \|\frac{x - y}{2}\| - 1)$$

hence

$$2k\rho_{k,X}(\tau) \geqslant 2k \left(\left\| \frac{x+y}{2} \right\| + \left\| \frac{x-y}{2} \right\| - 1 \right).$$

By arbitrariness of x and y, we obtain the inequality

$$2k\rho_{k,x}(\tau) \geqslant 2k\rho_{x}(\tau)$$
,

that is $\rho_{k,X}(\tau) \gg \rho_X(\tau)$. Now assume that $||x|| = ||y_i|| = 1, i = 1, 2, \dots, k, \tau > 0$. Set

$$\sum_{i=1}^{k} (\|x+\tau y_i\| + \|x-\tau y_i\|) - 2k = a,$$

then there exists j, $1 \le j \le k$, such that

$$||x + \tau y_i|| + ||x - \tau y_i|| - 2 \geqslant a/k$$

SO

$$\left\|\frac{x+\tau y_{j}}{2}\right\|+\left\|\frac{x-\tau y_{j}}{2}\right\|-1>a/2k.$$

Let $\tau y_j = z$, then ||z|| = 1 and $||\frac{x+z}{2}|| + ||\frac{x-z}{2}|| - 1 > a/2k$, it follows that $\rho_X(\tau) > a/2k$,

hence

$$\rho_X(\tau) \geqslant \rho_{k,X}(\tau)$$
.

Thus we obtain

$$\rho_{X}(\tau) = \rho_{k,X}(\tau).$$

Theorem 4 Let X be a Banach space, then X is k-uniformly smooth if and only if X is uniformly smooth.

Proof. This is an immediate consequence of Theorem 3.

References

- [1] Diestel, J., Geometry of Banach spaces—Selected Topics.Lecture Notes in Math. 485, Springer, 1975.
- [2] Istratescu, V.I., and Partington, J.R., Math. Proc. Camb. Phil. Soc. 95 (1984), 325-327.
- [3] Istratescu, V.I., Strict convexity and complex strict convexity, New York and Basel .1984.
- [4] Jong Sook Bae and Sung Kyu Choi., Math. Proc. Camb. Phil. Soc. 97(1985), 489-490.

关于 k-致凸性和 k-致光滑性的几点注记

南朝勋

(安徽师范大学数学系,芜湖)

擁要 设 X 为Banach空间,记 $U(X) = \{x \in X: \|x\| \le 1\}$ 。 V 、I 、 I Istratescu 引入了下面两个概念。Banach 空间 Z 叫做 k 一致 凸的,如果对每个 $\varepsilon > 0$,存在 $\delta(\varepsilon) > 0$,当 $x_1, \dots, x_k, y_1, \dots, y_k$ 为U(X) 中的元素且 $\sum_{i=1}^k \|x_i - y_i\| \ge \varepsilon$ 时,有 $\|x_1 + \dots + x_k + y_1 + \dots + y_k\| \le 2k(1 - \delta(\varepsilon))$ 。 X 叫做 k 一致光滑的,如果当 $\tau \to 0$ 时, $\rho_{k,X}(\tau)/\tau \to 0$,其中 $\rho_{k,X}(\tau)$ 规定为

 $2k\rho_{k,X}(\tau) = \sup\{\sum_{i=1}^{k} (\|x+\tau y_i\| + \|x-\tau y_i\|) - 2k : \|x\| = \|y_i\| = 1 \ i = 1, \dots k, \}$ 本文证明上述 k 一致凸性等价于一致凸性,并且 X 为 k 一致光滑的当且仅当 X 为一致光滑的,因此这两个概念都不是新的概念。