Sufficient Conditions of a Chaotic Map with Topological Entropy 0

Yang Jingchun

(Dept. Mathin Jilin Teachers College)

Let $f \in c^0(I)$ (where I = [0, 1]) and $\operatorname{ent}(f) = 0$, $x \in \overline{p(f)} - p(f)$. In this paper, through study of limit behavior of the sequence $\{f^{2^n}(x)\}_{n=0}^\infty$, we give two sufficient conditions of chaotic map with topological entropy 0, when the set of periodic points of f is not closed.

Lemma | $^{\{1\}}$ Let $f \in c^0(I)$. Topological entropy of f is zero if and only if the following conditions hold:

- (1) For any positive integers m and k, $\forall x \in I$, the sequence $\{f^{m\cdot 2^{n+k}}(x)\}_{n=0}^{\infty}$ has at most two limit points.
- (2) If $x \in \overline{p(f)}$ and sequence $\{f^{m \cdot 2^{n} + k}(x)\}_{n=0}^{\infty}$ has two limit points, then they belong two endpoints of same connected component of $I + \overline{p(f)}$, furthermore x is one of them.

Lemma 2 Let $f \in c^0(I)$. If the periods of periodic points of f are powers of 2, then

- (i) If p is a periodic point of f with period 2^n , then $O(p, f^{2^i})$ is strong ly separated under f^{2^i} for each $i = 0, 1, 2, \dots, n-1$ (27).
- (ii) If $x \in \Omega(f) p(f)$, then $O(x, f^n)'$ is strongly separated under f^n ' for each n > 0. ([3]).

Lemma 3 ⁽⁴⁾ Let $f \in c^0(I)$ and the periods of periodic points of f be powers of 2. If $O(x, f^{kn})'$ is strongly separated under f^{kn} for some n>0 and for each k=1,2, then the convex hull of $O(x, f^{2n})'$ contains no fixed point of f^n .

Lemma 4 ^[5] Let $f \in c^0(I)$. If there exist sequences $p_i \rightarrow x$ and $q_i \rightarrow y$ of periodic points, satisfying following conditions:

- (1) $p_1 < p_2 < \cdots < p_i < \cdots < x < y < \cdots < q_i < \cdots < q_2 < q_1;$
- (2) Either $x \in p(f)$ or $y \in p(f)$;
- (3) There exists a sequence of positive integers n_1, n_2, \dots , such that for each i > 0,

$$f^{n_i}(J_i) \supset J_{i+1} \bigcup K_{i+1} , \quad f^{n_i}(K_i) \supset J_{i+1} \bigcup K_{i+1} ,$$

where $J_i = (p_i, P_{i+1})$, $K_i = (q_{i+1}, q_i)$, then f is chaotic.

Lemma 5 Let $f \in c^0(I)$ and ent(f) = 0, then the set of recurrent points is • Received May 21, 1988. not closed if and only if there exist $x \in \overline{p(f)} - p(f)$ such that x is not a limit point of sequence $\{f^{2^n}(x)\}_{n=0}^{\infty}$.

Proof Necessity is clear. Hence we only prove sufficiency. If x is not a limit point of the sequence $\{f^{2^n}(x)\}_{n=0}^{\infty}$, by Lemma 1, the sequence $\{f^{2^n}(x)\}_{n=0}^{\infty}$ only has a limit point y. Without loss of generality we may assume that x < y.

Since $x \in \overline{p(f)} - p(f)$, it follows that $x \in \Omega(f) - p(f)$. By Lemma 2 and continuity of f, for each n > 0, such that $f^{2^n}(x) \in \overline{p(f)} - p(f)$. Since $(x, y) \cap p(f) = \phi(\text{see}[7])$ thus $(x, y) \cap O(x, f) = \phi$.

Note that the sequence $\{f^{2^n}(x)\}_{n=0}^{\infty} \to y$, hence we can asseme that there exists some positive integer N such that for each nonegative integers i

$$f^{2'}(x) < x$$
, if $i < N$; $f^{2'}(x) > y > x$, if $i > N$.

By (ii) of Lemma 2 and Lemma 3, clearly, for each $i \le N$ and each positive integers K, it follows that $f^{2'(2K-1)}(x) < z_N < x$, where z_N is a fixed point of f.

Similarly, for each i > N and each K, it follows that $f^{2i(2K-1)}(x) > y > x$. Obviously, $O(x, f) - \{x\} = \bigcup_{\substack{i=0 \ K=1}} \{f^{2^i(2K-1)}(x)\}$, hence $(z_N, y) \cap O(x, f) = \{x\}$.

Thus x is not a recurrent point of f. Since $\overline{p(f)} = \overline{R(f)}$ hence $x \in \overline{R(f)} - R(f)$.

Theorem | Let $f \in c^0(I)$ and ent(f) = 0. If there exist $x \in \overline{p(f)} - p(f)$ such that x is not a limit point of sequence $\{f^{2^n}(x)\}_{n=0}^{\infty}$ then f is chaotic.

Proof By Lemma 5 and Theorem A in (6), it is each easy to see that f is chaotic.

Theorem 2 Let $f \in c^0(I)$ and ent(f) = 0. If there exist $x \in \overline{p(f)} - p(f)$ such that sequence $\{f^{2^n}(x)\}_{n=0}^{\infty}$ has two limit points, then f is chaotic.

Proof By Lemma 1, if sequence $\{f^{2^n}(x)\}_{n=0}^{\infty}$ has two limit points, then x is one of them.

Without loss of generality we may asseme that another limit point is y and y>x.

Since $y \in R(f) - p(f)$ (see [3]), thus $[x, y] \cap p(f) = \phi$, hence there exists a sequence $n \to \infty$ of positive interges such that $f^{2^{n_i}}(x) < x$, $f^{2^{n_i}}(x) \to x$ and $f^{2^{n_i-1}}(x) > y$, $f^{2^{n_i-1}}(x) \to y$. By (ii) of Lemma 2 and Lemma 3, $O(x, f^{2^{n_i}})$ is strongly separated under $f^{2^{n_i}}$ for each i and the convex hall of $O(x, f^{2^{n_i}})$ contains no fixed point of $f^{2^{n_i-1}}$. Hence we can select a sequence $p_i \to x$ and sequence $n_i \to \infty$ of positive integers, such that for each $i = 1, 2, \dots$, satisfying following conditions:

- (1) p_i is a periodic point of f with period 2^{n_i} ;
- $(2) p_i < p_{i+1} < x \text{ and } n_i < n_{i+1};$

(3) (p_i, x) contains no fixed point of $f^{2^{n_i}}$. For each i > 0, let $k_i = 2^{n_i - 1}$ and $q = f^{K_i}(p_i)$.

Since $f^{k_i}(x) > x$ and $[x, y] \cap p(f) = \phi$, condition (3) implies $y < q_i$.

On the one hand, since $O(p_1, f^{k_1})$ is strongly separated under f^{k_1} , there exists a fixed point z_1 of f^{k_1} with $z_1 \in (p_1, q_1)$.

On the other hand, if K is the convex hull of $O(p_2, f^K)$, then by (i) of Lemma 2 and Lemma 3, K is contians not fixed point of $f^{K_2/2}$. Since $n_1 < n_2$, $K_2/2$ is divisible by K_1 . It follows that $f^{K_2/2}(z_1) = z_1$, since $f^{K_1}(z_1) = z_1$ Thus $z_1 \notin K$. This implies that $y < q_2 < z_1 < q_1$. Furthermore, using induction on i, we have $p_1 < p_2 < \cdots < p_i < \cdots < x < y < \cdots < q_i < \cdots < q_2 < q_1$

Note that $f^{K_i}(p_i) = q_i$ and $f^{K_i}(q_i) = p_i$. It is easy to check that the sequences p_i and q_i satisfy the hypothesis of Lemma 4. Hence by Lemma 4, f is chaotic.

References

- [1] Zhou Zouling, Depth of chaos, Acta Math. Sinica, to appear.
- (2) Block, L., Tran.A.M.S., 254 (1979)
- (3) Liao Gongfu, Northeastern Math. J., 2(2) (1986), 240-244.
- (4) Misiurwicz, M., Iect. Notes in Math., 729 (1979), 144-152.
- [5] Xi ong Jincheng, ICTP, Trieste, Preprint, IC/87/193.
- [6] Liao Gongfu, Northeastern Math, J.
- [7] Zhou Zouling, Chinese Annals of Mathematics Series A, 4(1983), 6:731-736.

拓扑熵为零的混乱映射的充分条件

杨景春

(吉林师范学院数学系, 吉林市)

搞要 线段上的连续自映射,当周期点集为闭集时,其轨道十分简单,当然,动力系统不会是混乱的,因此,研究周期点集的聚点的极限性态与混乱的关系,无疑可以进一步揭示混乱现象产生的原因。文〔6〕证明了当回归点集非闭, f是混乱的。本文则给出了周期点集非闭时了为混乱的充分条件。这说明了只要周期点集非闭动力系统就可能是混乱的。

设 $f \in c^0(I)$ 和ent(f) = 0, $x \in \overline{p(f)} - p(f)$. 本文通过研究x 轨道上的点列 $\{f^{2^n}(x)\}_{n=0}^{\infty}$ 的极限性态,给出了当广的周期点集非闭时,广为混乱的两个充分条件。

定理 | 设 $f \in c^0(I)$ 和ent(f) = 0,如果存在 $x \in p(f) = P(f)$ 使x 不为 $\{f^{2^n}(x)\}_{n=0}^{\infty}$ 的极限点时,则f 是混乱的。

定理2 设 $f \in c^0(I)$ 和ent(f) = 0,如果存在 $x \in \overline{P(f)} - P(f)$ 使 $\{f^{2^\bullet}(x)\}_{n=0}^{\infty}$ 有两个极限点时,则f 是混乱的。