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Composition Operator on Hardy Space*
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For composition operators defined on Hardy space with respect to the unit
disk, extensive results have been obtained. In this paper, we study composition:
operators on H?(B) (1< p<co), where B is the unit ball in the n-dimensional
space C".

In what follows, the element (z,,z,,+,z,) of ¢ will be denoted by =z,
and z"= (2", z]% -, z7*) for any ordered n-tuple m= (m ,m,,*=,m,) of nonnega-
tive integers. For convenience, the same notation will be used to represent the
monomials of several variables z=2z,z,-2z,, 2"= zy'zy 22" . Doing so will cause
no confusion and the reader is able to tell the meaning of the notation from the
context.

Suppose ¢ is a mapping B—~B, the composition operator C, is defined by
C,f= fop. First, we give a characterization of this class of operators.

Theorem | Let T be a bounded linear operator on H’(B) (1< p<co), and
Tz be not a constant, Then T is a composition operator if and only if

Tz"=(T2)". (1)
holds for any ordered n-tuple m of nonnegative integers. )

Proof Necessity is evident. We only prove sufficiency. For any z,B, con-
sider the map I' from H’(B) into C: fi'>(Tf) (z,). Put r,(z)=z,, then z,¢ H*(B).
Define ¢,(z)) =Tz, we have

(Tr))(zy) =Tm, =@, (2,). (2)
Define ¢(z)=(¢,(2), 9,(z),+,9,(z)). From (2), it follows that
(Tn,)(z) =n,9(2). (3)

It follows from the definition that ¢ is a holomorphic map and for any polyno-
mial p defined on B.
(Tp)(z)=plplz)). (4)
holds.
To prove (4 ) hold not only for any polynomial p but also for any feH’”(B),

we should prove ¢(z)e B, where z¢B.

* Received Apr.26, 1988.
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Consider the ball algebra .4(B), which is the class of all f:B->C that are
continuous on B and holomorphic in B. Equipped with the supremum norm,
A(B) is a Banach algebra. Obviously, A(B)C H’(B). Take a linear functional [’/
on A(B):

I'"=T|A(B).
From 7z"=(Tz)" and the definition of I', we have
F'(ppy) =T (pp) =T (ppy) (2y)
=(Tp) (z)(Tpy (z)) =T (p )T (p)=T"(p)T'(p,)
holds for any polynomials p,, p,. Thus it is easy to see that '’ is a linear mul-
tiplicative functional on A(B), so e =1.

Now, pick ¢4, such that |q;,.(zo)|2:em'¢,.(zo)2. Take a polynomial p(z):ew‘zlz+

ee + ew"zfl . We have

lo(z) |* = plo(z)) = Tp) (z,) =T(p)=T"(p)< | pl = max|p(2) [<1.
zeB

Therefore ¢(B)C B. Suppose there exists zoeB such that |p(z,)|=1.From maxi-
mum modulus theorem for holomorphic function,

(p(2),9(z,)>=C, zeB. (5)
holds, where C is a constant with modulo 1. Thus ¢(z) =Cg(z,). Take p(z)=
z,2z,°+z,. It follows from (4 ) that

(Tp)(z)= ple(2)) =@, (z)+-¢p,(2) =const
which contradicts that Tp is not a constant. Hence ¢(B)CB.

Using (4 ), boundedness of T, and density of polynomials in H’(B), we
conclude that (Tf)(z)= f(g(z)) holds for any feH’(B), which means that T =
C,. QED.

Denote Moebius group on B by Aut(B). From Theorem |, we can get a
necessary and sufficient condition that a composition operator is invertible ,
which coincides with the case of unijt disk. '

Theorem 2 Let C, be a composition operator on H’(B). Then C, is inver-
tible if and only if ge¢Aut(B).

Proof Suppose that ge¢Aut(B), It is easily seen that C;‘ :Cwﬂ . Conversely,
suppose that C, is invertible. Denote T:C;l . Then for ordered n-tuples of
nonnegative integers, / and m, we have

(Tz!"™o @ = CWTZHM = ghm= glm
=(Tz'op)(Tz"5g) = (T2'TZ"jop
which implies

(Tz""" = Tz'Tz")op=0. | (6)
Since C, is invertible, the map ¢ should be not a constant., Thus the range of ¢

is anopen set in B, It follows from ( §) that Tz""=Tz'Tz", Particularly, Tz" =

— 50 —
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(Tz)". In view of CTz=2z, so Tz is not a constant. Now, it follows from Theo-
rem | that T is a composition operator, Suppose T=C,,1i.e. C,zC;l. We have
o(Y(2))=y(p(z)) =2z, therefore pcAut(B). QED.

To give an estimation of the norm of composition operator, we should do
some preparations. Suppose that fe¢H”(B) (1<<p<oo). Denote f.(z)= f(rz) for
0<<r<t, and

1,=sup | {[ 111740} "<+oo, e
where ¢ is rotation-invariant positive Borel measure on 8B for which ¢(dB)=1.
Put

(a-lz»"
lL=Cz, o
From the knowledge of [ 3] chapter 5, it follows that in case p=1,there exists

P(z,¢)= , ZeB, (¢dB.

a least M-barmonic majorant # in B, |f|<u, and a positive measure u on 0B
such that
w=Plul, I,=|ul, (8)
where PLu](z) =faBP(z,§)du(§); in case 1< p< +oo, there exists a least M -har-
monic majorant u in B, |f|°<u, and f*e<L’(0), such that
w= P11, 1,= 157, (9)
where P[|f*|?1(z) = jaBP(z, O 1/*(¢)|?do, . With the above symbols and notations,
we have the following lemma and theorem.
Lemma (I)?=u(0). (10)
Proof If p- 1. from (3] Theorem 3.3.4, lrl/rvx}u,do=du.

in the weak™*-topology of the dual space of C(3B), where u,(z)=u(rz),for all
z¢dB, and u is a positive measure on 08B satisfying ( 8). Thus llmf udo= f du=
fu|. Since f udo=u(0), using (8) we obtain I, = u(0).

If 1<p<oo, ‘from [ 3] Theorem 3.3.4, lrl/r'r% lu, - | £*7]l, =0, so that lim|u,|, =

Irel?. Bat  Ju,l, = ut0), by (9) u(0)=(,?. QED,

Theoremm 3 Let ¢:B—B be a holomorphic map. Then for composition operator
C,:H"(B)>H"(B) (1< p<oo), the following estimate
1+ |@(0)] )

(11)
- |@(0)]

ICI<(+

holds.
Proof (i) If p=1, feH'(B), then take least M-harmonic majorants Uy, lpg,
and a positive measure ux, on 0B such that
|f(2)|<uz)=PLu,1(2), |fop(2)|<u,o(z)y IS 1=l 12)
By the definition,
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u, (2)<u (p(2). _ (13)
It follows from Lemma | and (8), (12), (13) that
IC,f = 1 foul =u, (0)<u, (p(0))

(1- o) [»)"
e f“ 1-<@), O™ “sls
1+|¢(0), n 1+'¢(0)| R
e —ere—— d - L ALAA N .

(ii) If 1< p<<oo, similar to (i), using Lemma ] and the illustration before
this lemma, we have
IC, f 17 =4, (0)<u (900

+|o0) |

- |@(0) ]

Corollary | Let F:B—B be a holomorphlc map, F(a)=0, and gecAut(B),
@(a) =0. Then for composition operator C.:H’(B)~H"(B) (1<p<o),
1+ (0] \n

-l <o>|)

Proof It is evident that Fop ':B—B is a holomorphic map, and Foqp','(O)=0
(3] Theorem 8.1.2 implies

-fP(q:(o),s’)If‘(g)l’d >( s,  QED.

lcq < ( (14)

|Fop ' (2)[<|z].

for all zeB. Set z=¢(0). It follows that |F(0)|<|e(0)|.Applying Theorem 3
;ti for 0<x<1, we have
1+|F(0)| 1+ |@(0) ] \»
Il < (= [F0)] 1- o0 )
Suppose (edB, a>1. Denote D,(¢)={z ||1 —<z,§)|<—2a—(1 -1z|®).If for every
a>1 and for every sequence ({z,} in D,({) that converges to ¢, f(z,) converges
to a same point, then we denote this common limit by k-lim f({) ([ 31, 5, 4,
6). From [ 3] Theorem 5.6.4,if feH"(B), then f*(¢)=k-lim f(¢) hold for almost
all (¢dB, where f* is the function defined on 9B, which appeared at the illus-

and the monotonicity of

)< ( . QED.

tration before Lemma 1.

Lemma 2 Let feH’(B) (1<p<co), pcAut(B). Then f*s 9= (fop)* a.e. on
0B .

Proof From [ 3] Theorem 5.6.4, there exists a subset 4 of 0B with mea-
sure ¢ zero, such that f*(¢)=k-limf(s) exist for ¢ €A. By y, we denote the
characteristic function of set S.[ 3] Theorem 3.3.8 yields that

gt (@d0.= [ Plo0),0x ., (07 (),

=[ P(9(0),¢)x(¢)da,
ZM_)_,) j (H)do, =
g0y ] ap¥a€)d9:= 0
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i.e.p '(A) is also a subset of 9B with measure zero. Since @cAut(B), by [3]
Theorem 2.2.2 and Theorem 2.2.5, we can choose aedB such that
1-le)|”  1-]a|?
1-1z[*  1-<za)|’

14

so that

1-lal _1-lp? _ 1+]a]
t+fal = p-1z)2 T 1-Tal ¢
Besides, for any z,B, [ 3] Theorem 8.1.4 (a generalization of Schwarz lemma)

implies
1-Co@soz 0P 1-lpz) P [1-¢z,2pF  1-|z]?
(1-lo(2) ) 1- 1z, 1=z 1-le@]?
1+]al 2 [1-<z,z) )
< i
) ATy

Let z, (€9 (A4), we have

H-<p(2), 0| 1+|a|)2 l1-<z, &

(1- o)) 1-lal” a-|z|"?
which means @(D,({))CTD .}, (@()). Since ¢(z) tends ¢({) as z—{,

T-T1ai”
(fo@)* (&) =k-lim (fop)(¢) = li_.n} SflepzN =k-lim f(p({)) = f*(@({).
zeD,(¢) QED.

Corollary 2 Let gpcAut(B), a=min(|p(0)|, '¢"'(0)|). Then |[CJ|’> (%):'

< (

Proof First, since ¢ '¢Aut(B), it follows from Theorem 3 that

1—|¢"<0)|)n

1+le o |” T .‘

Secondly, from Lemma 2, [ 3] Theorem 5.6.8 (a) and Theorem 3.3.8,
IC, 717 = [ | (fomr*() Pa0,= [ | 1o (21| do,

Ie 17>, > (

1= 19C0) |y v s '
= . . pd R ————— - ED.
pr<¢<0) 2) | f*(z)|"do,> ( T Toto] Y Q
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