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Approximation by Interpolating Polynomials in C? Spaces*
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Abstract In this paper we proved that for any function f(x)€C’, 1< p<l+oo,
o (x)=1/J1-x’, there exists a series {g )} on —%<¢1<0<q)2<% , such that the

n

order of approximation by interpolating poiynomials of f(x) at interpolation points

{6,) can be estimated by the best approximation in C? spaces.

{ . Introduction
We denote by C’ the class of real functions satisfying the condition;
1
[ o Potodx< + oo,

where 0<\p<+oo, w(x)=1/J1-x".
For f(x)eC., the norm of which is defined by

1 » 1 1/
= — dx}'”
Ir0,= 4 1reol e | (1)
Let ., .(8), 1<k<n+1 be the roots of the equation,
. cos((n+1)arccosx] —sind =0 (2)

and L(f;6,3x) be the n-th Lagrange interpolationg polynomial to f(x) at ;i',',,k(ﬁ),
1<k<n+y (if fCx, ,(8,))= +oo for some &,¢(p,,p,), we suppose L (f;6,,
X, (8))= +oc0), S

It is well known that for any fixed matrix of inierpolation points there exi-
sts a continuous function, to which the interpolating polynomial doesn’t conver-
ge uniformly. But in 1936 Erdds and Feldheim [ 1] proved the convergence in '
the mean of L (f30,x) in C? spaces. Leter, Askey ([ 2], [3]), Navai [4] got
some results about the L’ convergence of interpolating polynomials under various
weights. But all these result have been obtained under the assumption that the
interpolated functions are continuous.

If we weaken the condition on f(z) as only require that f(z), f(x)¢C?,there
is no common matrix of interpolation points for all functions in C!, since func-
“tions in this class may not have definition at some points. However in this paper
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for each f(x)e¢C! we still can construct a matrix of interpolation points throught
the parameter 4 and prove the convergence of the Lagrange interpolating poly-
nomials of f(x) at these interpolation points in this space rapidly.

Our main result is the following theorem.

Theorem | Suppose f(x)eCl, 1<p< + oo, ~%<¢,<0<¢2<—72'-,then there
exists a sequence {4,}e(@,,p,] such that

||L (f3 8, %) - f(x) |, <CE,, () (3)
where C is a constant only depending on p, ¢,,9,,and
E, (f)=inf |f(x)-P(x)],
Pell,

where the infimum is taken over ail polynomials of degree at most n, which we
denote by 17, .

Here and after we denote by C,C,,C,, - the constant only depending onp,
;> ¢,, NO matter how large they are, and we always assume 1< p< + oo, ——72'— <
o <g <5 .

2 . Some discyssin on complex analysis

Let D be the unit disk |z|<1 in the complex plane.
Lemma | Suppose {z.} 1<j<N are distinct points in D, and

min
k j=

th
Then for any complex numbers {a,}, 1<k<N, there exists a function g(z)analy-
tic on D such that

1°. g(z)=a,, 1<k<N;

—A=—-1>6>0, (4)

—zjzk

z , N
2o [ le(e") Pde<Cp, 8) 3 la, 1”1~ |z,
. _

where C(p,d) is a constant only depending on p and §.
The proof of Lemma 1 can be found in [5].
In 1981 Maptupocsan'®! expresses the function g(z) as follows :

N
2o a1~ |2,/ (1 -7,2))*CF(2) B(2) ) /(F(2,) B,(z,))
where -

N — —
E(z)=exp(- 3, (1~ 2,1 4 +Z,2)/(1-Z,2))
N —
B()=]] (z-z)/(1-7Z2)
=1

jxk
By using Lemma 1 we can prove the following Lemma 2.

Lemma 2 Suppose 8¢(p,, ¢,) and £, ,(8), k=1, £ (n+1), are all the
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roots of the equation.

Reg"" =sing
on |¢=1. Then for any polyomials P,, (z)¢ll,,,, , we have
"B, (e < g [Py (L0 N2, (6)
ERLE T n+1 0<|k;<n+1 201350,k .
The Marciekiewicz-Zygmund inequality 7} is a special case =0 of this
Lemma,
Proof Let z,,(8), k= 11, + (n+1), be the roots of the equation.
Re z"" - p,sind =0 (7)
on |z|=p, where
pr= (1= 2" (8)

We can get

| /it DgyndkTt 26,
z, (0 =p, exp( NTTSY i) , (9)
Z0 (O =7, (O, 1<k<n+1, (10)

Thus we can see that z, ,(#) are also the roots of the following equation;
0,,4(2) = 22"~ 2p 5ing2"" ! + p? 4 (1)
For the sake of simplicity we use the notations w,(z), z,(8) and ¢ () tosub
substitute o, ,(z), z, ,(8) and ¢, (@) respectively. ‘
By calculating directly, we have

z-2,(8) lwg(2) | 1
0<)i I< (n+ 1) 1‘_7-_,‘(0)2 ‘Zlhﬂ 0<|]En+1) ~|z—'-zj(0)[
= log(z) |/(z " |ag(z™) )
Let @
: z,(0) -z,
Ak(a)= FI k-_- £ )
o<li<iney V1 - 2,(0)2,(0) 1 - ) (12
JEk
Then
. 1-2,(6)z z-z,(0)
A (8)= lim l——————— —_—
«(6) z-—-lzt(ﬂ) z-z,(8) 0<|z£1(n+1) 1-z,(6)z
1- |z ,
= w,{Z (D)),
|2,(8) "o, (z, () ™) | loaze(6)) |
Since
2_ . 1 2
1=z *=1- A =557 (13)
|z, (8)|*"" = p? (14)
and in virtue of (11), we have
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lo,(z,(8) )| <p, 2+ 2lsind |+ p} (15)
It is obvious that
log(z, (N ]=2(n+ 1|z, |"]| (z, ()" - p,sinb| (16)
Because of Re(z,(8))"" =p sind we have
|02,(6))"" = p,sind | = [1,02,(6)1"" | = p,cosd.
Consequently fsom (13), (14), (15) and (16) we get

1
n+1

p i+ 2]sing| + p2)

201-(1- Y'J(n+1)cosd

A(8) > p}'/(n+1)(

In virtue of —-*72L<¢,<0<¢2<% we get .
A4,(6)>C>0. (17)

For P, ($)ell,,,, , let .
P, (£.(8))=a,8) (18)
and ’
Q01 (2) = Py, (p, O/ D02)
Then

(1P (e 1Pdr} 2 p 8 7 1Q,,., (e ?7dr}!”

<2€{Jﬁ 'Q2n+l(e“)lpd[}l/p' (19)

Besides we have
0,,.E () =a, ), 1<|k|l<n+1, (20)
In virtue of Lemma 1 (see (17).) there exists a function g,(z) analytic on D
such that

g,(z, () =a (8), 1<lk|<n+1 (21)
and
T ity |p ’ C, ?
I legelPar<e, 3 la@Pa-lz <57 T (@) 2
T o<kl < (n+ 1) o< lk|<(n+1)

It is clear that Q,,,,(z) is the interpolating pclynomial of g.(z) at {z,(6)},
1<|k|<n+1. Then we have

~ 1 w,(z) g (&)
g,(z) Qz,,”(z)——z?”. =108 =z d¢, |z|<1. (23)

By the (p, p) property of Cauchy integral operator we have
(7 g€y = @y, (&) |Pdr)'
4

<Cysup lo) | {7 |24 2 Jrary s
lz]=1 o ae’)
<cC, 'sumw,,(z) |/’n!1f log( | {7 lg, ey |Pdey' . (24)
z|=1 gl=1 -
— 92 —
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In virtue of (11) we have

|a)0(z) '<lz|2"+2 + 2p"[sit10|lz|"+1 + p?

n

<itp,tor s lzl=1, 5 <o <0<o, <5
and
/ log(O) |7 < el - 2p,[sing [1¢]"" - o)™
1 T T
<, =1, - T<e, <0<, <5 .
1-2p,-0F 2~ )
Since when n tends to +oo, we have p”ﬁ-e—l , then for sufficient lagre n
1 1
> ———— >0.
1-2p,—p2 = 2(1-2e7 —e?)
Hence

|Sl|1p lwa(z)l/?nlf lwa(§)|<cs .
z|=1 di=1

Consequerntly in virtue of (24) we arrive
(7 lgete™) = Qopa(e™) Pan) "< Cl [ lege™ Pan)'”,
Thus by (22) we get

(7 10 (e Pan) < C [ |g,(e P e}

1 i : P/
<Cyf—— 2] a o))"’ (25)
8 n+1 gclkl<ien © | '

By (19), (25) and. (18) at last we get
{J.u |P2n+|<eil) !pdt}l/p<2e{fj |an+l(eit) ]pdt}l/l’

-

1 1/ 1 1/
<G, oo e @)=y DI N C N )l utd
it iy it k[ < ¢

Thus we complete the proof of Lemma 2.

3 . Proof of Theorem |

By (2) we can get

cos Akt T —20
X, (8)=cos XCEED , 1<k<n+1. (26)
Also we have
Regn,k(g)zln,k(g)’ k= t 1, 22,0, i(n""l), (27)
For f(x)eC?. we can verify
b= %ff |f(costy|ran™, ' (28)
Since .
Ln(f;ﬂ;COSt)=L,,(f;ﬁ;—-é—(z+z")), z=ée'" (29)
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are polynomials with respect to z+2z ', the degree of which doesn’t exceed n, we
have
H (z):=2"L,(f; 0;%(2 +2z ') ell,,
and
H,(£,,(0) =0, (IL,(f;65Res, ()

=&, (L, (S 5 1, 11 (0))

=06, @ f(sty 5 (8)), k=11, £2, 00, £ (n+1),
By Lemma 2 we have

J” 11, e Pdi<— G, @)=

Pl RO
1 0<]il< (n+1) k=1 ' )
Since
[ L fs85cost)|Pdr=[" |H, (") |%dr,
then o N

j IL (f;0;cost)|”dt< kzif(x,, (O (30)

Let P (x)ell, be the best approximation polynomial, it means
Il f(x) = P ,= E, ,(f).

Since .
Ln(P,ﬁ 0;x)= Pn(x)’
we have
lfx)~-L,(fs05)],
= | f(x) - Px)+L(P,- f3 83 x) || ,<E, (D +|L,(f-Ps6;x)],
<E, (/)+] n+1 é'f(’“ () =P (x, (0N},
Then
(Plroo-L (f;ﬂ;x) Jedey'

n+ 1/
<nE, (f) +{ n+1 ,?-:lf. | f (0o (8)) = P(x, (8)|°dE}*

n dka+n—268 | Akm+n-260 Pag\l/P
<1E, (f)+{~ szw, | fcos T2 ~ P(cos2 2 I20 ) | ag)
<zE, (f)+ {c,of_' |f(cost) - P,(cost)|"dr) "< C, E, ,(f).

Let -
G, (f)=18le,<8<p,, |f(x)-L,(fi85x)]| <—————C,,E HOAIN
and denote by IG (f)|the Lebesque measure of G,(f), then
(w_z_w._) ’C\\E,, (/) (o,- 9, -G, (£)]2"”
<{J If(x) = L,(f; 85 %) %46} °<C,,E, ([,

(9,0, 1N\G ()
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Thus we can get

PP _ 2(p,- @)

6,(N) > (9,- 0 -3 5 (31)

That means G,(f) is not empty, so there exists {4,}¢G,(f) such that

lfx) - L,(f3 85 ) | ,<—2—C,,E, (), (32)
@, 9
It is namely (3 ), thus we complete the proof of Thearem 1.

Theorem 2. Suppose f,(x), f,(x)¢C?E, 1<p<+oo, —-’;—<¢p, <¢J2<—§—, then
there exists a sequence {4,}¢(o,,p,] such that (3) is valid for both f,(z) and
£,(z). ‘

In fact because of (31) we have
1G,(£) NG >4 (-9,

Thus there exists 6,¢{G,(f)) NG,(f;)} such that (32) is valid for both f,(z) and
. fH(2).
It is obvious that we can extend Theorem 2 to the case of the finite number
of functions f,, f,,, f,€C. .
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