The Spectrum of a Noetherian Ring*

Huang Tianmin

(South-Western Jiaotong University)

The concept of generalized primary rings was introduced by Satyanarayana [1]. In a similar fashion, we define a generalized semi-primary ring to be a ring of which each ideal is semi-primary. It follows from [1] that there exist at most tmo prime ideals in any generalized primary (or generalized semi-primary) ring R with dim R < 1. In this paper we shall consider the case dim R > 2 and discuss the relations between its prime ideals of height i and those either of height i-1 or of height i+1.

We shall use R to designate a commutative ring with an identity and Spec (R), its spectrum, i.e., the set of all prime ideals of R.

Theorem ! Let (R, m) be a noetherian local domain with dim R = 2 and let $(P_i | i \in V)$ be the set of all prime ideals of R of height $h(P_i) = 1$. Then

(1)
$$\bigcup_{i} P_i = m$$
 and V is infinite;

$$(2) \qquad \bigcap_{i \in V} P_i = (0).$$

Proof That $\bigcup_{i \in V} P_i \subseteq m$ is obvions. If $\bigcup_{i \in V} P_i \neq m$, there exists $x \in m$, $x \in \bigcup_{i \in V} P_i$ and $(x) \subseteq m$. Since m is the only prime ideal of R containing (x), we have $\sqrt{(x)} = m$. The ideal (x) is m-primary, because m is a maximal ideal of R. From the dimension theory of noetherian ring we know that the height h(m) = 1 This leads a contradiction. Thus $\bigcup_{i \in V} P_i = m$. If V is finite, then there exists $j \in V$ such that $m = P_j$ which contradicts the assumption dim R = 2. hence (1) holds.

Next, suppose $\bigcap_{i \in V} P = I \neq (0)$. Since I is an ideal of the noetherian ring, there exists a primary factorization of I. Hence the number of prime ideals belonging to I is finite. Let q_1, q_2, \dots, q_n be the minimal prime ideals belonging to I, it is clear that $h(q_j) = 1$, $j = 1, 2, \dots, n$. Since $P_i \supset I$ for each $i \in V$, there exists an integer j (1 < j < n) such that $P_i = q_j$. Therefore V is finite. This contradiction shows the validity of (2).

Theorem 2 Let R be a noetherian ring of dimension $n(2 \le n \le \infty)$ and let

^{*} Received Apr. 16, 1988

 $P_0 \subset P_1 \subset \cdots \subset P_k$ be a maximal prime chain of R. Then to each integer i with 0 < i < k, the set $\Sigma_i = \{P \mid P \in \operatorname{Spec}(R), P_{i-1} \subset P \subset P_{i+1}\}$ is infinite and $\bigcap_{P \in \Sigma_i} P = P_{i-1} \bigcup_{P \in \Sigma_i} P_i = P_{i+1}$. In particular when n is finite, by taking k = n, then each noetherian ring R of dimension n contains an infinite number of prime ideals of height i (0 < i < n).

Proof Since there exists a bijection between the set $\{P|P \text{ is a prime ideal of } R/P_{i-1} \text{ and } h(P)=1\}$ and the set $\{P|P \text{ is a prime ideal of } R \text{ with height } i \text{ such that } P \supseteq P_{i-1}\}$, P_{i+1}/P_{i-1} is a prime ideal of R/P_{i-1} of height 2. Localizing, $(R/P_{i-1})_{P_{i+1}/P_{i-1}}$ is a local domain of dimension 2. Consequently, there is a bijection between the set $\{P|P \text{ is a prime ideal of } (R/P_{i-1})_{P_{i+1}/P_{i-1}} \text{ and } h(P)=1\}$ and the set $\{P|P \text{ is a prime ideal of } R$, $P_{i-1} \subseteq P \subseteq P_{i+1}$, $h(P)=i\}$. The rest of the proof follows immediately from Theorem 1.

Corollary | Let R be the same as in Theorem 2. Then

- (1) Each prime ideal $m \in \text{Spec}(R)$ with $1 \le h(m) = k$ is the union of all prime ideals of height $j (0 \le j \le k)$ of R contained in m.
- (2) $\sqrt{(0)}$ equals to the intersection of all prime ideals of R of height i (0<i<n). If $\bigcap_{R = 0.7} P = \sqrt{(0)}$, then R is not semi-local.

Proof (1) For each i ($1 \le i \le k$) and $P \in \operatorname{Spec}(R)$ with h(P) = i, let $\{(P_a | a \in V)\}$ = $\{q \in \operatorname{Spec}(R) | q \subset P, h(q) = i - 1\}$. Then, by Theorem 2, we have $P = \bigcup_{a \in V} P_a$, hence $\bigcup_{A \in \operatorname{Spec}(R)} P = \bigcup_{A \in \operatorname{Spec}(R)} P$. This proves the first part of the corollary.

(2) Suppose that $\{P_i | i = 1, 2, \dots, l\}$ is the set of all minimal prime ideals of R, then $\bigcap_{\substack{P \supset P_i \\ h(P) = 1}} P = P_i$ for each i. Hence $\bigcap_{\substack{P \in \operatorname{Spec}(R) \\ h(P) = 1}} P = \bigcap_{i=1}^{l} P = \sqrt{(0)}$. Similarly we have $\bigcap_{\substack{P \in \operatorname{Spec}(R) \\ h(P) = 1}} P = \sqrt{(0)}$.

Let $(R, m_1, m_2, \dots, m_k)$ be a semi-local ring and $\bigcap_{i=1}^k m_i = \sqrt{(0)}$. Then there exists a positive integer a such that $(0) = (\sqrt{(0)})^a = (m_1, m_2, \dots, m_k)^a = m_1^a, m_2^a, \dots, m_k^a$. We know that R is a noetherian ring. On the other hand, R is also an artinian ring by lemma 26, § 4.3 in [2]. Hence dim R = 0. This contradicts the hypothesis that dim R = n > 2. The second part of the corollary is thus proved.

From the course of the proof given above, it is easy to see that if R is a noetherian semi-local ring, then R is artinian iff its minimal radical and its maximal radical are identical.

As a consequence of Corollary 1, we have

Corollary 2 If (R, m) is an n-dimensional noetherian local ring and $x \in R - U(R) = m$ (U(R) is the set of all unit of R), then for each i (0 < i < n), there exists a $P \in \text{Spec}(R)$ such that h(P) = i and $x \in P$.

Corollary 3 If R is an n-dimensional noetherian ring $(n < \infty)$, then for every integer j (0 < j < n) and each pair of prime ideals S_j , T_j , of R with $h(S_j) = h(T_j) = j$, $S_j \neq T_j$, there exist prime chains $S_1 \subset S_2 \subset \cdots \subset S_j$ and $T_1 \subset T_2 \subset \cdots \subset T_j$ such that $S_i \subset T_k$, $T_i \subset S_k$, 1 < i, k < j.

Proof The case that j=1 is obvious, Suppose j>1, there exist x, $y \in R$ with $x \in S_j$, $x \in T_j$ and $y \in T_j$, $y \in S_j$. By Corollary 1, there exist S_{j-1} , $T_{j-1} \in \operatorname{Spec}(R)$ such that $h(T_{j-1}) = h(S_{j-1}) = j-1$, $S_{j-1} \subset S_j$, $T_{j-1} \subset T_j$ and $x \in S_{j-1}$, $y \in T_{j-1}$. In the same manner, we can obtain the chains $S_1 \subset S_2 \subset \cdots \subset S_j$ and $T_1 \subset T_2 \subset \cdots \subset T_j$ as desired.

Theorem 3 The following conditions of a noetherian ring R are equivalent.

- (1) $|\operatorname{Spec}(R)| < \infty$.
- (2) R is a semi-local ring and dim R < 1.
- (3) There exists a positive integer k such that for each ideal I of R, the number of prime ideals belonging to I dose not exceed k.
 - (4) The descending chain of the intersections of prime ideals is stable,
- (5) The intersection of some prime ideals which do not mutually contain each other is not a prime ideal.

Proof $(1) \Rightarrow (2)$ by Theorem 2.

Obviously $(1) \Rightarrow (3)$, (4), and (5).

To show (2) \Rightarrow (1). Since noetherian ring R has only a finite number of minimal prime ideals, by the semi-local property, there exists at most a finite number of prime ideals of height 1. This shows $|\operatorname{Spec}(R)| < \infty$.

 $(3) \Rightarrow (1)$. Suppose that $|\operatorname{Spec}(R)| = \infty$ and P_1, P_2, \dots, P_n , \dots are prime ideals with $h(P_i) = 1$, $i = 1, 2, \dots$. (This is possible by Theorem 2). Let $I_a = \bigcap_{i=1}^a P_i$ then P_1 , P_2, \dots, P_a are minimal ideals belonging to I_a . The arbitrariness of a contradicts the assumption of (3). Thus (1) is a consequence of (3).

 $(4) \Rightarrow (1)$. Suppose that $|\operatorname{Spec}(R)| = \infty$ and $P_1, P_2, \dots, P_n, \dots$, are prime ideals with $h(P_i) = 1$, $i = 1, 2, \dots$, If k > n then $\bigcap_{i=1}^k P_i \subset \bigcap_{i=1}^n p_i$. We claim that

 $\bigcap_{i=1}^{k} P_{i} \neq \bigcap_{i=1}^{n} P_{i}, \text{ for otherwise we will have } P_{n+1} \supset \bigcap_{i=1}^{n} P_{i}. \text{ Then there exists an integer } j \ (1 < j < n) \text{ such that } P_{n+1} \supset P_{j} \text{ with } h(P_{n+1}) = h(P_{j}) = 1. \text{ This contradiction implies that } (\bigcap_{i=1}^{n} P_{i} | a = 1, 2, \cdots) \text{ is not stable. thus } (4) \text{ implies } (1).$

 $(5) \Rightarrow (1)$. Let $|\operatorname{Spec}(R)| = \infty$, P be a minimal prime ideal and P_1, P_2, \dots ,

be prime ideals such that $P_i \supset P$, $h(P_i) = 1$, $i = 1, 2, \dots$. Let $\bigcap_{i=1}^{\infty} P_i = I$, then I = P because prime ideals belonging to I are finite. This contradicts the condition (5). Hence (1) follows from (5).

As a result of the proof given above, we have

Corollary Let R be a noetherian ring and $\{P_i|i\in V\}$ be an arbitrary infinite set of prime ideals of R which do not mutually contain each other. Then $\bigcap_{i\in V}P_i$ is also a prime ideal.

Reference

- [1] Satyanarayana. M, Generalized Primary Rings, Math. Ann., 179 (1969) 109.
- [2] Feng Keqin, «Basic Commutative Algebra» (text in Chinese), Higher Education Press, 1985.

Noether 环R中的素谱 Spec(R)

黄天民

(西南交通大学,成都)

摘 要

1 · R如上,则:

ŧ.

- ①. $m \in \text{Spec}(R)$, $1 \leq h(m) = k$, 则 R 中所有含于 m 且高为 $j(0 \leq j \leq k)$ 的素理想的并等于m;
- ②. R中高为 $i(0 \le i \le n)$ 的素理想的交等于 $\sqrt{(0)}$, 若 $\bigcap_{P \in \max(R)} P = \sqrt{(0)}$,则 R必不是半局部环.
- 2. (R, m) 是 n 维 Noether局部环, $x \in R u(R) = m$, (u(R) 是 R 中所有单位的集),则 $\forall i$, $0 < i \le n$, 均存在 $P \in \operatorname{Spec}(R)$, h(P) = i, $x \in P$.

最后给出了在Noether 环 R 中、| Spec (R) | | $< \infty$ 的几个等价条件。