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Abstract

This paper gives a complete classification of associative rings of order p*(k>3)

k-1

with additive group of type (p ', p).

I Introduction

The classification of finite associative rings was reduced to that of rings of
prime power order. Throughout this paper aring always means an associative ring
(not necessarily with an identity). Let R(n) be a complete set of representatives
of rings of order n. The number of elements of R(»n) is denoted by N(n)EsIG].
1964, Bloom determined R(2>){1) 1969, Raghavendran determined R(p?){?); In
1947, Baliieu had given a correct result for R(p®) already'®}; 1973, Gilmer and
Mott published a paper on the same problem'?? and made a correction by them-
selves on Review after three years, but there still remained a few errors; Liu Ke
qin (X 828 corrected these errorst®7 in 1982, and listed the representatives of order
p* with identity'®3 in 1983, which is a part of R(p*). We tried to determine R(p*)
two years ago. Because the additive group of rings has 5 types, the work is di-
vided into 5 parts. The first case, i .e.,’ the case of cyclic type is trivial . The
second case to consider is the type (p’, »). Here we generalize the problem clas-
sification of rings of order p‘(k>3) with additive group of type (p*! p).We get
the following two theorems :

Theorem | There are exactly k+6 if p>2, or k+5 if p=2, isomorphism
classes of the non-nilpotent rings of order p* (k>3)with additive group of type
o, .

Theorem 2 there are exactly (p+1)(3k—-7) +8 if p>2, or 4(2k-3) if p=2,

isomorphism classes of the nilpotent rings of order pk (k>3) with additive group
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of type (p*7', ).

I Preliminary

Assume that p is a positive prime, integer k>3, R is a ring of order p",
it’s additive group (R, +) =(u) +(2) is the direct sum of cyclic subgroups (u)
and (p) of order p* ' and p respectively. Regarding it as a Z- module, we may
write R={au +,8ylﬁe P, a¢P,_,} where P= {0,1,000, p= 1} (Coee CP; = {0, 1,0, p-11C

product ring of order p). When p>2, let
-1, if p=3(4).

- {the smallest nonsquare residue mod p in {1,2,---,—9—%} if p=104).
Let E(p)={xeRjo(x)=p}={p p*Pu+dolp,d¢p, (y,0)#(0,0}, where o(x) is
the order of xe(R, +),E(p*™") = {xeR|o(x) = p*™'} = {au+ polacP, ,, BeP, (a, p)=1}.
We have |E(p)|=p>— 1, |EGP* )| =6 (p* ) p=(p~ D P . There are just p*(p—1)* 8¢~

nerating sets of (R, +).

(o) | =au+Bo, v'=pp* u+6p,aeP,_ By, 6¢P, (a, p)=1= 3, p)}. (1)
Since px is nilpotent for all xe¢R, pRC rad(R)---the radical of ring R.We have
pR < (pu) for any ue E(p*™") which is a nilpotent ideal of ring R with cyclic
additive group of order p**. And p*?R=(p*?u) =N, for any ue E(p*™).

Let (u, ») be an arbitrary generating set of (R, +). Since py= 0, We have
pv’= puv=pou =0, and so {uv,uu,vz}CE(p)U(O). The maultiplication table of (u, »)
is as follows

{uzzau+1“y, uyzolzpk'2u+1120, (2)
vuioz,pk"zu+12,v, vzzazz'p"*zu+1nv,
where a¢ P, ,,0,,,1,;¢P are the structural constants, which obey the - associative
law of multiplication, that is
11004, 70 =1(11,7 Ty ) =0,55(T 5, = 1) =7,,(1,, —1,) =0(p)
12T, a) =1475, =7, (T3, = @) (P05, (1,, —a) =0, (1), —a) (p),
T220127202 T3~ a)(P), 130, =0,,(1,, —a) (p),

012112 =111037=0 T4, (D).
I Non-nilpotent Case

Let N=rad(R), R=R/N. Since RDON =rad(R) DpR, we have p*2=|pR|<|N|
<p“. Hence |N|e{p*2, p*™",p*}. If IN|=p*, then R=N is nilpotent. We first
consider the other two cases in which R is non-nilpotent.

I. |N|=p*?case. N= pR and semi-simple Engzor F,(bF,, where F, denote
a field with g elements. 1t is easy to prove that R#F,, thus, F,DF,~R= (u)D

(v), where up=u=0, u’=u=u+N, v =p=p+ N, veE(p), ue E(p*™"), (pu) =pR=N,
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R=(u)+ (). Now (2) is

2. k-2
W= ppu,  w=0, 0, ,
{”u =021pk—2”’ 0’ '—'Uzzpl“zu +v (fePy-z, 9,£P) 2"
It follows from (3) that ¢,,=0,, = ~0,,. Let
a=1=Bp+ (Bp)?—eee + (-~ D*X(Bp)2 (4)

then a(1+ﬂp)=1+(ﬁp)k"'El (p*™') . Under the transformation: u'=au, v'=
0,0 Pu+p, (2) becomes: (u)?=u', uy'=v'u’=0, (v)’=y, andso R= ()P @)
= ABF,.
I. |[N|=p*"" case. RQNDPR, R=F,. There are two possibilities :
1°. NNEP*)#6¢. Thus N=(u), ucE(p*™), R=(u)+ (0), ve E(p) — (u),
R=R/(u) = (3)=F, v2=0=0+N=p+ (u). Now (2) becomes
{uzz,,xu’ ,‘}:{1’2""’ b, uf_:a”i:z"’ @,p) (2"
WU=CT P U, V'=EO0np Tutuy .,
It follows from (3) that 0,,=0,, =0, We may assume 0,,=0, by replacing »
with p+0,,p*?u if necessary. Now (2”) is
. u'=plu, 1€{1,2,0,k~1}, uv=ou=0, p°=v, we get k—1 new representatives:
R=)D ) =(Zp /Zp* """ YDF,, 1=1,2, e, k—1.
2°. NNE(p*")=¢. Now NDpR=(pu), u¢ E(p*"). Hence there exists ve E(p)
such that N=(pu) +(»), R=(u) + (), R=(u)=F,,

thet, we have 7,,=0 in (2), and u’=71y0+ (L+8p)u. Now (3) is

u*=u=u+N.Since o is nilpo-

11(012703,)=0=1,,(1,,~73) (D), 021, D=0=0,,7,,-1) (p),
T (T~ D=0=1,(1,,— 1) (p), 0,(1) 1) =0,,(1,,-1) (P, (5)
O12T12=T110 3,=0,75, (P) .
1) If r,,=0, then (5) becomes
{‘71271250 =onTy (P, 1111, D) =0=1,(15, -1 (p),
O kT =~ 1)=05(1,,— 1) (P), 02113~ 1)=0=0,5(14,— 1) (p).
@. When 0,,=0,i.e., 2°=0, our discussion is divided into 4 cases:
(i) 1,,#0%71,, case, we have 0,,=0,,=0,71,,=7, =1, We may assume =0
by taking ¢ as (4), and replacing u by eu. Thus (2) becomes u’*=u, ’=0,
up=p=pu, and R==A[8), 6%=0. ’

.. . 2 .-
(ii) 1,,7#0 =1, case, we have 0,,=0, 7,,=1, and 0, =0, i.e.,»”=0. Taking

(57

. . _ -2 .
a as (4), and using the transformation: u’=au, v'=v-0,,p* *u, we reduce relation

(2) to (u)?=u’, W'v'=0", v'u’=0=(»)?. Then the right regular representation gives

a B
Rg{( 0) |a(A, ,B(B} .
(iii) 1,,= 0 F71,, case is similar as (ii), we may reduce (2) to be (u")?=
. . a 0
w,vu'=y, w'v'=(»)*=0, and the left regular representation gives: R= {(,8 O)Iae A,
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pe B}, which is anti -isomorphic to (ii).

(iv) 1,,=0=1, case, we have 0,,=0,0,,=0,,. Taking a as(4), and using
the transformation:u’=au, v'=p-0,,p* *u, we reduce relation (2) to (W)’=u’,
wy'=vu’'= (0)*=0, and R= ()P =ADN, .

@. Wheno,,70,i.., 0°#0,we get 1,,=7,=1,0,,=0, =0 from (5).We take
a as (4). When p=2 we have 0,,=1, When p>2, we may take dep such that
8%,,=a or ga (p), and so 6%022=1 or ¢ (p) according to g,,is a square residue
mod p or not. Under the transformation: u’=au, »’=dp, relation (2 ) becomes:
k-2q

or #*=¢p* 1

(uDr=w', uy'=vuw'=y, (v)2=p"u or ep**u, then R=4(8), 6%=p""1,

Gf p>2).

2) If 7,,#0, then we get 0,,=02 ,7,,=7,, from (5). If we take a as (4),
and use the transformation: u'=au+1,,0, v’=0 when 0,,=0, or W'=au-1,,0, =0
when o,,70, then both cases are reduced to 1) .

Summarizing, we obtain Theorem 1 mentioned in (I ).The list of represen-

tatives is as follows:

N=rad(R) | __
R=R/N | Num representatives Multiplication table
| N N
P’ (pu) FF, 1 ADF, w=u up=0=ou, 0’ =0
(Z ! VA kAl+l) F
(u) F, k-1 l‘pl/zp kvé? P ut=pluyuz=0=pu, v’ =0
1 AL 83, 6*=0 u'=u, uv=v=ou,v°=0
1 ADN, wr=u, up=pu=p"=9
x a p 2 2
pr! 1 {(0 0)|aeA, BeB} \u’=u, uw=0, ou=0"=0
(pu) + () | F,
1 {(; 3)'(1(/1,/3(3} w=u pu=p, up=0"=0
1 AEaj’ 02:pk—21 uzzu’ uD:D:Du, v2:pk'2u
. 0 o ‘2 W=u,u=v=ou,
A =ep1
CoJ, =ep U (p>2)

k+6 when p>2

Total
kf5 when p=2

IV Nilpotent Case
In an analogous manner to (II) we get theorem 2 mentioned in (1), The

following is a list of the representatives
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multiplication table representatives number
w=pu+oy, uv=pu=p"=0 0 0 0
N = (a pa 0 acA, feB k-2
121,2,'", k—2 ﬁ a 0
u=plu+ 1o,0%= 0, uv=pu=p""u NRY pla+p* B p"‘za) aec A ( A
1=1,2,000, k=3,7=1,2, 000,013 nT :{( Ta 0 ﬁeB} p—1)(k-3)
. a k-2 k-2
1_ . .2 k42 (P B pTay |aeA
w=p,0*=0,uv=pu=p***u N,“,(l):{( . 0 ) ﬁeB} 1
ul=go, v*=0, uv = pu = p**’u k-2p k-2
’ - p B pa ae A
(p>2) Nk_'(8)={( £a 0 ) ﬂeB} 1
ur=plujup=pu=0"=9
’ y A { Z k—1+ _
1=1,2,000 k-1 (Zp/zp YON, k-1
u'=plu,v*=0, 0 0 0 e
—vu=uv=pk'2u, N,lg{ (a pa-p*8 p*a ) ,BGB} k-1
[=1,2,00, k-1 B 0 0
ul=plu, pu=0"=0, 0 0 0
uv=p*’u N/= { ( a pla p"‘za) ae A, ﬁGB} k-2
[=1,2,000, k-2 B 0 0
u=plu, v*=0,uv=0pu = 0 0 0 wed)
op* U, 1=1,2,0, k-2 N,’(a)z{( a pla+p7p p“a) ,éeg} (p-1)(k-2)
0=0,1,°°°’p—2 ﬂ 0 0
w=opu=0,00*=uv=0p*u, |__ 00 0 . .y
Ny (o) = ( a O p*oa+p) B 2
o=0,1. 5 0 0 Be
u'=plu, ou=0,00*=up= 0 0 0 iy
ap*tu, 1=1,2,e, k-2 W,(o)={( a pa p"‘z(oa.+ﬁ>) ﬂeB} (p+1)(k-2)
g=0,1,e, (p—1)/2. B 0 0 if p>2,
u= p'u,ou=0,uv=0p"u, 0 0 0 ve A 2(k-2)
pP=ep U, 1=1,2,000 k-2 N,‘(a)={ ( a pla p*Xoa +6ﬂ)) e B if p=2
0=0,1,%, (p—1)/2. B 0 0
p>2 (p+1D@Bk-7)+8
Total
p=2 4(2k-3)
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