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| . Introduction

) Many physical problems have been represented by systems of autonomous
ordinary differential equations, in which the solution to the physical problem is
given by an orbit connecting two critical points. At the same time, much theo-
retical research has been concerned with the global structure of dynamical sys-
tems. In recent years, a considerable number of papers have been written in
connection with this subject (see [ 1—51]).
Consider a C! system of differential equation defined in N

x=F(x) (1)

where NCR" is an open set. The system (1) is called cooperative if —a;']—>0

for all iz=j and for all xe N. We assume that the system ( 1) is cooperative and
has critical points 0=(0,0,+.,0) and Q= (q,, g,,,q,), Where g, >0 for i=1,2,
eee,n. Conlon [ 4] has proved that if F is C? and each off-diagonal term of
DF (x) is positive, then there is a unique orbit of F contained in B(0,Q)={xeR=»:
0<x,<g, for i=1,2,-., n} which joins O and Q. This result is a generalization
of a 2-dimensional result of Conley and Smoller [ 1]. Selgrade [ 5] has given
an n-dimensional result whith is the same as that of Conlon [ 4] except he
replaced C? vector field with a C' vector field and he weakened the positivity
assumption on the off-diagonal terms of DF(x). All authors mentioned above’
have studied this problem under the assumption that the principal eigenvalues
of DF(0O)and DF(Q) are nonzero. When one of these two critical points is de-
generate, i.e., one of these principal eigenvalues is zero, the problem for the
existence and uniqueness of orbits connecting two critical points has not been
solved yet.

The purpose of the present paper is to study this problem for two and three
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dimensional cooperative systems. We shall give two theorems about the existence
and uniqueness of orbits connecting two critical points, which contain the dege-
nerate case. The tool made use of is the monotonicity theory and Wazewski

retractibn method .
2 . The Main Results

First of all, we give the following notation and definition.

Let x, yeR". There is a partial order on R" given by x<y (x<y) if and only
if x,<y;(x;<<y;) for i=1,2,e., n. Assume that N is a neighborhood of B(0,Q)and
F:N-»R" is a C' map. If the system (1) is cooperative, then by the Kamke
theorem the flow {¢,}
<¢,(y) for t>20;

The system (1) is called irreducible, if DF(x) is irreducible for all xeN,

,>o generated by (1) has the property, if x<y, then ¢ (x)

that is, DF{(x) leaves invariant no nontrivial coordinate subspaces of R".

Set

(p,9) ={xeR": p<x<gq}, ((P,9))={xeR": p<xq].

In this paper, we shall prove the following theorems

Theorem | Suppose n=2, and F:N—>R?is a C' map. If the system (1) is
cooperative in B((0,Q) with critical points only at O and Q, then there is an orbit
contained in B(0,Q) which joins O and Q. Furthermore, if DF(Q) and DF(Q)
are irreducible, then this connecting orbit is unique in B(O, Q).

Theorem 2 Suppose n=3, and F: N—R’is a C' map. If the system (1) is
cooperative and irreducible in B(O, Q) with critical points only at 0 and @,
then there is a unique orbit of F contained in B(O, @) which joins O and Q.

3 . Proof of the Theorems

Proof of Theorem | Let L denote the open line segment with endpoints O
and Q. By Theorem 2.3 in [6], for any p¢(O, @), either limé,(p) =0, or else

1—*>00

limé¢ (p)=Q. Choose ge¢ L, without loss of generality, we assume that lim¢,(q) = Q.

1o t—>0o

From the Kamke theorem it follows that limg,(p) =Q for pe(gq, Q). We claim that

t—>o0

lim¢, (p) =Q for any peL.If not, there is pee L such that lim¢,(p,) = 0. Therefore,
{-—+»oc

r—+>oc

limé,(p) =0 for any pe(O, po).Set go=sup{peL: limg,(p) =0}. Then 0<g,<<Q.

I—+*o0 1—>co
Since ¢,(g) is continuous in g, lim¢(g¢) =Q.
t—»co
Set
S(0) ={pe[0, Q):lim ¢ p) = O},
[—+oo
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S(Q)={peLO, Q):limg,(p) =0}.

It is easy to see that S(O) and $(Q) are two nonempty open sets of [0, Q) which
are disjoint. By qoeS(Q), we conclude that S(O)NS(Q)+#¢ . This contradiction
shows the claim. '

Set

L={(0,y): 0<y<gq,}, L={(x,q,: 0<x<gq,},
L={(x,0): 0<x<q,}, 1,={(q, »)0<y<g,}.
We assert that there exists p;el, such that ¢,(p,)& (O, Q) for re( ~¢,0) where £¢>0
is sufficiently small and i=2,4. In fact, if there is p,e/, such that F(p,) #0,hence
Fy(p,;)<<0.Such a point p, satisfies the condition we need; If for any pel,, F(p)
=0, then p,=(0,q9,) is the point we need. The existence of p, can be proved by
similar way.

Let I' be the closed line segment with endpoints p, and p,. Set A={pel:
there is r(p)<<0 such that ¢, (p)e/,(J/, and ¢,(p) E (O, Q) for te(t(p) - ¢, K(p)),
where ¢>>0 is sufficiently small}, B={pe:there is 1(p)<<0 such that tzﬁ,(p)(p)el3
Ul, and ¢,(p)ECO, Q) for te(t(p)~¢,1(p)), where ¢<0 is sufficiently small}.

By continuity of ¢ and definition of 4 and B, 4 and B are open sets of I’
which are disjoint, It follows from the connectivity of I' that A|Bx£I, i.e.,
there is a point p& I'-(A{JB) such that ¢ (p)e(O, Q] for any t<0.So,1inéo¢,(_p7)=0

or Q. By definition p=£p, for i =2,4, hence, 0<<p<Q. As proved above, pe S(Q).

It is easy to prove that lim ¢,(p) =0, that is, ¢,(p) joins O and Q. If DF(O)

{— — oo

2

and DF(Q) are irreducible, then proof of uniqueness of such a connecting orbit
is similar to that of Selgrade [5]. The proof of Theorem 1 is complete.

In order to prove Theorem 2, we first show the following lemma.

Lemma | Either LCS(0) or else LC S(Q)(these notations are the same as
those in proof of Theorem 1),

Proof The o-limit set and ¢-limit set of pare denoted, respectively, by w(p)
and a(p). Set M= {pe0, Q:w(p)& {0, Q}}. By Theorem 4. in [ 7], M has mea-
sure zero. Therefore, there exists pe({O, Q1] such that either w(p) =0 or w(p)=Q.
Without loss of generality, we assume that o(p)=Q. By the Kamke theorem,
(p, Q1CS(Q). To complete the proof of this lemma, it suffices to prove that LC
S(Q). Suppose not, there exists pye L such that w(p,) #Q. From the Kamke theo-
rem it follows that there is no point pe 0, p,] such that l]imtﬁ,(p) =Q.Since M (0,

py) has measure zero, there is p,€[[0, po)) such that limé,(p,) = 0.By the Kamke
t—>o0
theorem, (0,p,JCS(0O). Set
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q,= inf{ge L: w(q) = Q}, go=supi{geL:w(q) =0}.
By continuity of ¢,(p),q,& S(Q) and g€ S(0). Since M has measure zero, g,=
g5 . It is easy to see that o(ge) (0, @} =¢. From Theorem 4.1 in [ 6 ], we know
that w(g.* is a closed orbit, and 0<<w(g,) <Q. Since w(g,) is compact, there are
g« L for i=1,2 such that (0, ¢,;IJ<e(q,) <(q,,Q] . Set
K ={xe¢R’:x is not related to any yew(qgy) by<}.

From Theorem 2.4 in [ 8], K contains a bounded and connected subset K (p)
which is negatively invariant such that K (»)C[(0, Q). Moreover K(y) contains
at least one critical point # of (1), where y =w(q¢). By definition, (0, ¢,1N
K(y)=¢, and (q,, Q) K () =¢. Therefore, ue( 0, Q) — {0, Q}, which contradicts
ths assumption of Theorem 2. This completes the proof.

Proof of Theorem 2 By strong monotonicity of ¢,(p), (see (7,Thm 5.1))
and Lemma |, we can suppose that [0, Q) -{0}CS(Q), and all points in N-=
Bd({ 0, Q) — {0, Q} are strict ingress point, where Bd denotes the boundary of a
set .

Let 7; denote the plane passing thfough (0,0,9;), (4:/2,0,0) and (0,49:/2,0),
and let 7, denote the plane passing through (q,,4q,,4,), (q,,49,/2,0) and (q,/2,
q,,0). Set

=0, @Nx, for i=1,2,

S2= {(x, y, 2eRY: xP+yT+ z2= 1},

B={(x,y,z)eR’: x*+y*+ 21},

S$i=5*-{€0,0, t1)}.
Since N is homeomorphic to Si, N is noi contracible. We can easily prove that
NUZ,UZ, is homeomorphic to S. Therefore, N{JZ,|JZ, is contracible. Then N
is not a retract of ]VU)J,UZZ.

We claim that there is a point poeX, | JZ, such that ¢ (p,)e[(O, Q) for any
1< 0. If not, for any peX,|JZ,, there is a number r(p)<0 suchthat ¢ _ (p)eN,
where 1(p) =inf{r<0:0(p) (0, Q) for ae(1,0}}.

Let the mapping f:NUZ,UZ,>N

sy = {Gen PP B
r if peN.,

It is easy to prove that f is continuous, that is, N is a retract of NUZ,UZ,,

1(p)

which is impossible, according to the fact proved above.This shows that there
is a point pyeX,|JX, such that ¢,(py) [0, Q) for 1< (. Therefore, a(p,) (0, Q].

As proved above, a(p,) N{0, Q}=¢. It follows from Theorem 2.2 in [ 6]
that no two ponts of a(p,) can be related by <. Hence, a(p,) only contains
one point. It follows from Theorem 2.2 in { 7] that a(p,) =0,1i.e., &#(p,) joins

O and Q. The proof of uniqueness of such a connecting orbit is similar to that
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of Selgrade [5].

Remark In the proof of Theorem 2, Lemma 1 plays an important role ,
After completing this paper, we see Hirsch’s paper [ 9]. He has given an n-
dimensional result about lemma 1 (see [9,Thm 10.5]). However, the method used
here is not valid for n>>4. The reason is that N is contracible for n>4.
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