Journal of Mathematical Research and Exposition Vol. 10, No.2, May, 1990

Boundability of Open Manifolds*

Gan DanYan

(Department of Mathematics, Zhejiang University, Hangzhou)

An open manifold in question is assumed to be a noncompact manifold with compact boundary (probably empty). Let M be a connected open n-dimensional smooth manifold. Take the one-point-compactification of M, it will be denoted by $\overline{M} = M \cup \{ \bullet \}$, where \bullet is the infinite point. Since M has countable basis, \overline{M} is metrizable and $\{ \bullet \}$ is a closed subset and a G_{δ} set. By Urysohn lemma, there exists a continuous function $f: \overline{M} \rightarrow [0,1]$ with $f^{-1}(0) = \partial M$ and $f^{-1}(1) = \bullet$. Choose a suitable approximation we may get a continuous function $\overline{f}: \overline{M} \rightarrow [0,1]$ such that \overline{f}/M is smooth, $\overline{f}^{-1}(0) = \partial M$, $\overline{f}^{-1}(1) = \bullet$, \overline{f} has no degenerate critical points over M and then has at most countably many critical points. Such a function \overline{f} is called a Morse function on \overline{M} . The Morse number $\mu(M)$ of M is the minimum over all Morse functions f on \overline{M} of the number of critical points of f. If $\mu(M)$ is finite, M is called to be of finite type; otherwise M is called to be of infinite type.

An open smooth n-manifold M is called to be boundable, if there exists a compact smoth n-manifold N and a smooth imbedding $i: M \hookrightarrow N$ such that $N \setminus i(M)$ $\subset \partial N$. Such manifold N is unique up to h-cobordism and is called a bounded manifold of M.

Theorem A connected open smooth manifold is boundable if and only if it is of finite type.

Received May. 17, 1988. The Project Supported by National Natural Science Foundation of China.