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Abstract

This paper studies the continuous and differential properties of marginal func-
tions or extremal value functions of nonsmooth optimization problems with vecter
parameter . It gives the bounds of some directional derivatives of marginal func-
tions for nonsmooth and nonconvex problems in which the target function and
inequality constraints are Lipschitz and equality constraints are smooth. It is an
extension of [ 1], and [ 4] from one—sjde perturbation to vecter parametric per-
turbation . It also considers an extens.ion of [ 1] from smooth functions to nons—
mooth ;"ﬁnctions .

Section | Introduction

We consider the parametric nonsmooth optimization problem:
Pt: min f(x)

s.t. xeCy
&i(x, 1) <0, [=1,0, ps
h(x,1)=0, J=pt1l,ee,q.

where f:R"—>R, g, :R"XR">R, i=1,--, p, are Lipschitz functions. k,:R"x R">R,
J=p+1,., g, are continuous differentable functions. C is a convex compact set.

Remark The hypothesis on the boundedness of the set C makes convenient
for us to consider the continuity of optimal value function, and it is sufficient
for the differential stability of optimal value function to consider that C is a
closed convex set, Mbreover, it is natural that we may assume that h; are smooth
functions, ‘because it is rare for algorithm to have nonsmooth conditions.

The vecter t=(t;,+-,t,) of programming (Pt) is parametric vecter of the

problem. The feasible set S:R" > R" of the programming (Pt).

S {xeClg(x, 1)<0, hfx,1)=0, i=1,000p, j=p+t1,00, 9} (1)
For each parameter #, the optimal value V:R"—R for the programming (Pt) is:
V()L min{ f(x)|xeS1)}. (2)
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The corresponding optimal solution set M:R"—>R"
M2 (xS |00 =V(D) (3)

What we study is the continuity of the function ¥V (¢) and set-value map M (1)
and the properties of some directional derivatives about V(t).

In the case of all functions of the programming being convex, Rockafellar
(137 had quite well studied the stability and differential stability of the program-
ming in 70s. Zencke and Hettich [12] in 1987 had made a thorough discussion
to the programming in which all functions are convex and smooth. Evans [ 7]
firstgave the stable analysis for optimization problems whose. functions are non-
convex but smooth or have more properties. Ref. [8,9,10, 11] have respectively
made a progressive discussion for infinite dimension programme or second-order
directional dérivative of the optimal Value function. We are interested in the
optimization problem which functions are nonconvex and nonsmooth. Rockafellar
[ 3] has given a sophisticated study for the optimization which has vecter para-
meter and singleside perturbation using generalized lagrange function. Ref. [1 ],
[ 4] have given the upper and lower bounds of some directional derivatives of
marginal function with two different methods. What they thought of is an easy
problem for it has only single side perturbation. It can be seen from above that

the studies for nonsmooth optimization are not much.
Section 2 Stability

In the following, F will represent a point-to-set mapping of R” into R".
The map F is upper semi-continuous at f,eR", if for any neighbourhood
N (F(ty)) containing F(t,), there is a neighbourhood N(z,) of r, such that:
FIN( ) CTNF(y)) .
The map F is said to be closed at r,¢ R™, if for any 7,—»r,, x,¢ ), and
X, >x,, we have xye F(1,).
The map F is uniform compact near ¢, if there is a neighborhood N(z,) such

that the set Co { U F(r)} is campact.
1€ N(1y)

Property 2.1 [2]. Let F be uniformly compact near ¢,, then F is closed
at ¢, if and only if F(z,) is compact and F is upper semicontinuous at 7,.

It is obvious that the map S:R™>R" defined by (1) is closed and upper se-
micontinous .

Definition 2.1 The optimization problem (Pt) is called to be stable at ¢, if
(Pt) satisfies the following three conditions at ¢,

(1) V(r) is continuous at ¢,

(2) The map M is closed at ry;
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(3) The set M(¢) is nonempty for any te N (1ry), N(ry) is a neighbourhood
of t,. , |

Lemma 2.1 If the feasible set S(¢) is nonempty for some parametric vecter
t, then the optimal solution set M(r) is also nonempty.

Proof: Obvious.

Lemma 2.2 Considering the programme (Pt). If S(z) is nonempty, then,

(1) V(1) defined by formula (2) is continuous;
(2) M(r) defined by formula ( 3) is cloed and upper semi-continuous.

Proof (1) Taking xoeM(zy), then f(x,) =V(t,), for any &>0pecause f(x)
is continuous, there is a neighborhood N(x,) of x, suce that,

S xg) —e<< (X< filxg) +¢, for any xe N (xy)
For N(x,), because S(7,) is upper semi-continuous, there is a neighborhood
N (ty) of t,, such that, ‘
S(N (t5)) TN (x,).
Hence, V(tp) —e<V(t) <V (ty) +¢, fof any reN (1) .
Therefore, V() is continuous at .
(2) The result is obtained by combining (1) and the closeness of S(r).

Theorem 2.1 If the programme (Pt) is feasible, then it is stable.

Remark In Ref. [ 2], Gauvin studied the smooth programme, the target
function of which also has parameter, its stability requires (M—F) regularity
assumption, There is a re¢ R" such that the following two conditions are satisfied,

(1) (V. 8:(x, D), Fy<0, iel(x,7)={i|lglx,)=0}
(Veh(x, D, Fy=0, j=p+l,ee, q.
(2) The Jacabian matrix {V/,4,(x, 1)) has line rank (¢-p).
But for the nonsmooth programme which we are considering, the assumption

is not required.
Section 3 Optimal condition

Making an equivalent change to (Pt), we obtain,
Pt min f(x)
s.t.  (x,y)eCxXR"
g,(x, y) <0, i=1,0, p
hi(x, ) =0, j=ptl,ee,q
~y,tH=0 [=1,00,m
It is easy to see that the feasible set, optimal solusion set and optimal value
function of the new programme (Pt’) are the same as the programme (Pt)s, So
we still describe them using original signs. They are maps responding to r. The

new programme (Pt’) is also a parametric programming responding to 7.
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For a locally Lipschitz function f:R™ R, 8 f(x), fo(x;h) denotes respectively
the generalized gradient and generalized directional derivative at x in the sense
of Clarke.

The distance function from a point to set C:

d (X)) Linf{|x—c||| ceC)
The Clarke tangent cone of set C at x,
Te(x) = {9]d% X ) =0}
The normal cone of set C:
N (x) = {¢]<¢, 1) <0, for any 2eT.(x)}.
Hence, To(x)=Ngx), where T2(X) is the polar cone of T(x).
The recession cone of set C,
0°C={x+AyeC, for any x¢C, 1>0}

The tangent compatible cone of set C. X
K (x) ={o|for any &¢>0, there is a re(0,¢), wes+¢. B, sunh that x + rweC}
Obviously, T.(x)DK.(x).

If above sets are equal, thenlset C is called a regular set. All above defi-
nitions are quoted from [13], [14].

In the following of this paper, we always assume that set C is a regular set
and the optimal solution set of the programming (Pt) at ¢, is nonempty and the
optimal value V(zy) is finite.

Lemma 3 | Given an xeM(r,), then there exists a nonzero vecter (g, -,
Agyeeey 4, such that,

(1) all 44,..,1,are not less than zeros

(2) 2,8/(x,¥) =0, i= 1,00, ps

gtm

I P —_ P —_— —— +m — —
(3) 0eAd f(F, ¥) + Y APgE, M+ 3 4, Vh(F )~ T Are,+ N, oG5 7).

i=1" j=p+1 I=g+1
Where 3 f(x, y) is the gengralized gradient in the sense of Clarke at (x,y),

e, is an n+m dimension vecter. Its elements are zero apart from the (n+1)th

element. y=1,,
Proof It can be found in Ref. [15]

Lemma 3.2 [14] (1) Ng(x)=cl{{ ] 1-3d(x)};
120

(2) Togpe(x, 1) =Tl XT (35

(3) Neyge(x, ) =N(x) XN, (») . |
Lemma 3.3 [16] If the set C is regular, then | J1-3d(x) is closed. B
>0

Combining the above two lemmas, we have

CN(X) = 4-0d ().
1>0
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Lemma 3.4 [14] Let f:S—R be a locally Lipschitz function and its Lipsci

constant be K,' set CCS.If the minimum of function f on C is obtained
then the minimum of the function f(x) +Kd(x) on S is also obtained at x.

Lemma 3.5 (1) d () —d;’(_)(o;v), for any o,

(2) N 0 ©0) =N =Te(x).,

Proof (1) Since that T.(x) is a convex set and d.(x) is a convex function,

d(x) is a regular function. Therefore,
S (Ar0) —d_ - (0)
T (05 2) =lim dr 5 . To(%)
i~0

Since T.(x) contains original point and Tc(x) is a2 convex cone, then,

dy ;,(05 2) =limgd, . (-2)3/2

= }Ii‘ng[inf lo—t| |te Te(x)}3 /4

=inf{[lo—1 | |re To(X)} = d 5@ -
(2) T(x)(o) ={yKy, vy <0, for any z:e’I'T 5 (00}
={yl<», <0, dg ;5,05 2) =0, v}
={yKy, ) <0, d 5@ =0, vo}
={y|<y, v»<0, for any €T .(x)]=N.(x)=TYU%). [ ]
Theorem 3.] Let xeM(to) .
AL {(Rgy vy dyyomey dgyoeny 400 | 4,30, 0<i<ps 4,9,(%, ) =0, 1<i<py
0edqd f(x, y)+§:/1 A8,(x, y) + Z/I,Vh (x, y) - El e, +N
j=p+1 =g+1
I(x, y)= {i|8(x, »)=0, 1<i<p}.
KL | {(kgyoee, kg oo, ko) 06T, u(x, ¥) satisfies

(x, »}.

CXR"

Texr=(X, ¥)
ko> fx, y30);
k>8)Xx, y30), iel(x,¥);
k;=(Vh(x,y), v, pH1<i<q;

. ki= o em= €, 0), g+ 1<<I<qg+m}.
Then: A={(1,,1)| (1,,A)K>0} and it has nonzero element.

Proof For any (1o,4)€{(1,,A)K >0}, the following information
tained from the construction of K,

1,20, 0<i<p; and for any 0<i<p if g,(x,y)<0, then 4 =0, Namely
Ay Bi(x, »)=10,0<i<<p. It can also be seen from the construction of K,

- = - - q - +m
F) =4y f%x, ys0) + X A, 80(x, y30) + 34 (T hy(x, y),0) - qZ Aoy gm0,

j=p+1 I=q+1
for any 2eT_ ..(x, ).
Let p>0 be a Lipschitz constant of the function F(») on R"x R™ hence by
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lemma 3.4 and lemma 3.5. (1):
Fp) + p* dTC“_(v)>0, for any peR" x R™.
F(p)+prdy =, ,,(03 p) >0, for any s R"XR™.
Hence by the seperation theorem,

0edg=df (X, y>+2108(x )+ }:l,th(x Y- ZA e, +pddy (0D,

J=p+1 I=q+1
Since Np_ (O)Dlgo/l ade o 5 (0) and by Lemma 3.5. (2 ):
0t 0 f(X, V) +Zi g (X, V) + 5 ANTh(X,y) - ):_,’ml,-e,+NCXR,(Y,?).
. j=ptl I=q+1
Therefore (lo,/l)e/\ .

For any (45, 4) €A, then 1,0, 0<i<p, and there is a ¢y€df(X, y);
$€08,(x, », 0<i<p; TfeadCXR.(;,_Y) and p>0.
Such that:
P
Aot 1AL+ }:’11 Vh,(x,y) Zl ce,+pef=0.
: i=1

J=p+ =g+l
Multiplying the both sides of the last equallty by Ve TCXR_(x, ¥), and then
using the difinition of TCXR.(}-, y) and the fact that the Clarke’s generalized
directi onal derivative is the support function of the generalized gradient, we
have
G fUE T T80T, Ty + S ALTAE, T, 00— S ApCes, 30,
=1 : j=p+1 I=qg+1
for any veT_ (X, V).
Since A,=0, when ie{1,e, p}—I(x,y).
Hence, (Lg, 1) K20,
Therefore: A ={(1,,A)K>0}.
That the set {(4,,4)|(4,,4) K>0} has nonzero element can be obtained by
lemma 3.1. [ ]
For any (i,,1)¢/A\, we separate the set A into two sets relying on whether
Ao is zero,
0= {A]€0,A)eN}
Ay ={A](1,2) €A}
Obviously, A and A, are closed convex cone, A, is a closed convex set,
and A=A +Ags Ag=0"Ay, if A#o.

Section 4 Differential stability

LA (g, eee, 1, 01,20, 0<i<py 1;=0,p+1<j<q+m)
t=(t; o0, t,), T=10(0,%,0,2)¢R*™ is the parametric of (Pt)
L(S, T)2L+{a(S, -T)|a)0}
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S(T)Lsup(AT{AeA )

S(T) is the support function of A,. -

Lemma 4.1 [4] (i) Let T satisfy AT<{0, for all nonzero 1¢/\,, then S(T)
< oo and for any S>S8(T), K and L(S, T) are not separable,

(ii) Let T satisfy AT>0 for all d¢/A, and S(T)<oo, then for any S>S(T),
we have (S, —T)ecl(K-L(S, T)).

Now we introduce some directional derivatives and generalized gradients.

The upper Dini derivative,

V*(toy t)élig)lsup[V(rt) - V(t5) )/t

The lower directional Hadamard contingent derivative:
AV (14, 1) 2lim, inf{ V(1) = V(1)) /7
40 i

The generalized directional derivative,

vXto; NLlim sup inf (oty+1t’+n) —0v(ty+n)3)/t
o n~0 Jr-r<e

Where #,—~0 iff n—=0 and »(n)—>2(0).
The lower subdifferential :
v (r,) é{y|(y, ty<ldv(tg; 1), vt}
The generalized gradient,
V(1) 2{y|<y, 1Y<V¥145 1), v 1)

Let H=(h,, e+, h,), if the line rank of V,H(x,y) is (g-p), then the pro-
gramming (Pt’) is called to be satisfying A-constraint qualification.

Remark The constraint qualification we give makes weaker a requirement
to the equal constraints than the (M-F) constraint qualification did and no re-
quirement to inequality constraints.

Lemma 4.2 [ 2]. Let programming (Pt) satisfy A-constraint qualification,
Then for any direction (s,,,)¢R"x R", there is a neighorhood N(x, y) of (x,
y), a neighborhood N(,,0,) of (»,2) and 7,>>0 and there is a continuous func-
tion: a(ryx, 30,0, on Q= -1,7) XN (x, y) XN (9,,,) =R such that: a(0; x, y;
v,,0,) =0, (x,y;50,,0,)€N (x,y) XN (0,0,

da
dr

(13x, . 0,,v,) is existent and continuous on £;

da

dr (05 X,y;vl,vz)=0, (X, y!”l,”Z)(N(;’y)XN(UI,UZ)i

and function X (15x, y;2,,0,) = X +10, + alr; x, y30,,0,) satisfies,
H(X (15x, y30,,0,), y+10,) =H &, » + 1{/,H(x, y)o, + V,H(x, y)o,},
for any (15x, V301, 02) €2
Theorem 4.1 L et xe M (sy) NintC.
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(1) If A-constraint qualification is satisfied, and AT<0 for any AeA(x),
where T = (0,++,0,¢) €¢R**™ 1 is parametric vector, then V(1) <S(T, x )< +00.
(2) f AN(X)+#¢ or ATQ forany A€/ (x) then,
dV (145 1) <S(T, x).
(3) W (1) CA(X).
Proof (1) S(T, x)<<+oo is obtained by lemma 4.1 and since KNL(S, T)+¢
for any $>S(T, x), there is »=(»;, 0,) ¢ T(x)xT_(y) such that:

OG0 <S

&)(x, ys 0,0 <0, iel(x,y) (1)
Vhi(x, ys0,0) =0, p+1<i<g

~Ce, ) +1,+0, 1<i<m.

Since (VH (x,7),2) =(V,H(X, y),n) +{V,H(X, ¥),0,) and xe¢intC, applying
lemma 4.2, we get that there is a 7,>>0, such that the equation H(x, ry+1¢) =0
has a solution on C for 1€ (0,7,), and the solution is

x(t) =x+t1-0], where o{—>v (1—>0)
For %X, ¥ 0,,0,)<0, iel(x,¥),
lig)l sup( g,(x(1), to+711) ~ g,(x, ty)] J1<0,iel(X,y)

So while 7 is small enough, there is
g, (x(1), 1y + 1) <0, iel(x, y)
gix(1),t,+10)<0, i€{1, 000, p) = 1(X, y)
and (x(1),1,+711) is a feasible solution of (Pt) for 7¢ (0,74) .
Since f%x, v)<S,
$o fx(m) - f(x)<z-8,
Vieg+1t) —Vieg) <78, 1€(0,14),
therefore, V (14; t)<S, for any S$>S(T,X),
namely, Vity, D<S(T, x).
(2) If A(x)=Pand there is Ae/ ( X) such that A.T>>0, because of N (x)
=A,(X)+Ayx), hence S(T, x)= +oco and (2) holds.

If AT<0 for any AleAyXx) and S(T,x)<oco, for any S$>S(T, x), then (S, -T)
ecl(K-L(S, T)) by lemma 4.1, so for any 6>, there is T'/= (0,«.,0,)€¢R"™"™,
IT-T1<<8, p=1(0,,0)€eTADXT,.(¥) such that:

o) <S+6

gXx, v, vy, vy) <0, iel(X,y) s
Vh(x,y;0) =0, r+1<j<g
e,y +1,=0, 1<I<m

Hence, by the proceeding similar to (1).
‘ V{tys 1) <S(T, %) +6
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AV (ty; tV<S(T,x) +6

Let 6—0, then dV(ry 1) <S(T,x).

(3) If A\(x) =0, then the result is obvious, otherwise by (2),
dV (145t) <S(T, x), for any reR™,

Since S(T, x) is support function of A, (X),

W)L {yKy, 1 Y<S(T, DN=A,(x).

Directly obtained by theorem 4,1,

Theorem 4.2 (1) Let M(1o50) = {xeM (1) |\ (x) D or Te AAX)}, then:
dV(ro; 1)< inf S(T, x).

xeM (t,, 1)

(2) W UIC () Ax) B

xe M (t,)
In order to obtain the bounds of generalized directional derivative V*(to;t)

of optimal value function, the programming (Pt) is assumed to satisfy the weak
regular condition which is called tameness in [ 3], [4].

Definition 4.1 If the programming (Pt) satisfies the following property, then
(Pt) is called tame at r,.

there is a compact set A4, for every >0, there exist §>0,a>V(¢,), such
that the additional constraint distance (x, A)<e to (Pt) would not affect the
optimal value ¥V (¢) in (Pt), when |z -1, <4, V(+)<a. B

The tameness is different from the calmness for paramatric perturbation given
in [14]. The calmness mdy essentially be regarded as pointwise lower semi-
Lipschitz continuity of the optimal value function of the parametric programming,
which the tameness is equivalent to the strict lower semi-continuity of the opti-
mal value function. Some of the properties of thetameness have been described
by proposittons 8 —10 in [ 3]. An equivalent form of definition 4.1 is given in
L4].

Definition 4.2 If there is 6,>V(¢,), J6,>0,such that (Pt,) exists the optimal
solution x,, x,—~xeM(ty), for any r,—t, satisfies V(t,) <d,, [t—1,|6,, then (Pt)
is called tameness at f,. _

In the discussion of stability in Section 3, we assume that the set C is a
convex compact set. Now it is still assumed . By the definition 4.1,

Property 4.1 Parametric programming (Pt) is tame. [}

Theorem 4.3 Let (Pt) satisfy A-constraint qualification, xeM (¢,)(intC,

(1) If AT<0 for any AeAy(x) and xeM (¢y), then
. V*(to,t)< sup S(T, x), for any teR"™.

xe M(1,)
(2) W(ty) Ceol | JA[(0)+ | No(0)}.
xe M (ty) xeM (1)

where co!{ } is the convex and closed hull of set {}.
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(3) If M(ry) ={x}, then dV(sy) CA(X).

Proof (1) For any given ¢>0, n,~0 and 7,}0, by the property 4.1 and def.
4.2, there is an optimal solution x,belonging to S(¢,+n,) of the programming
P(t,+n,) such that x,~>xeM (1,).

For any re R™ satifying AT<C0 for any AeAy( x), if S(T, x)= +oo, then (1)
is obviously true, so let S(T, x) < +oo.

For any S>S(T, x), similar to the proof of theorem 4.1.( 2), there exists
e R™ satisfying |T-T'|<e, and there is »= (2,,2,)e To(X) xT (y) such that:

fox, 0y <<S+e :

glx, y; v,,0,) <0, iel(x,y) (6)
th(:\’—,y;vl,vz)zo, pH1<j<gq
—(e,v) +1,=0, 1<i<m

Similor to the proof of Theorem 4.1. (1), there exists »,,—~», (k—>o0) such
that: H(xk+rkvlk,to+r7k+1‘t’)20 and x,+71,,,¢6C while K is large enough.
By formulas (6 ): g(x,+1,0,,, ot n+1,4")<0, 1<i<p.
so x,+1, v, is a feasible solution of P(zy+ns+1,t") only if K is large enough.
For f%Xx,0,)<S+e, f°is continuous to o,,
SO+ 1,00, ~Vig+n) <t(S8+e).
Combining the above and the feasibility of x,+1,2,, ,
V(tgtn, +1,8") - Vg+n)<t,(S+e).
Therefore, while K is large enough,

N inﬁ (Vg +n,+1,0) = Vig+n)1/1,<S+¢.
-1l <e

Considering thatxeM (t,) is not identical with different sequences

lim sup inf (Vi tn+1,0") -Vg+n)l/t,
0 =0 [ <e

< sup S(T, x) +e.
xeM(14)

By the arbitrariness of ¢, we complete the proof of (1),
(2) Let B=Co{ [ A (x)+ [ ] Agx)}, if B is empty, then A (x) is

xeM (1) xeM (1y)
empty for any xeM (1) .

By (1) VNig, 1) = —co, and 3V (ry) =,
If B is nonempty, by (1):
VXeo, 1) <sup{AT|i¢B} for any reR™.
Therefore oV (ty,) C”B.
(3) By (2) and A(T) =ALT) +A(x) (A(X)+D). ' ]
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