On Multivalent Functions with Negative and Missing Coefficients*

S. M. Sarangi and Vijava J. Patil

(Dept. Math., Karnatak University, Dharwad-580 003, INDIA)

Abstract Let $P_k(p, A, B)$ be the class of functions $f(z) = z^p - \sum_{n=k}^{\infty} |a_{n+p}| |z^{n+p}| k \ge 2$ analytic in the unit disc $E = \{z : |z| < 1\}$ and satisfying the condition |(zf'(z)/f(z) - p)/(Ap - Bzf(z)/f(z))| < 1. for $z \in E$ and $-1 \le B < A \le 1$. In this paper we obtain representation formula, coefficient estimate, distortion and closure theorems and the radius of convexity for the class $P_k(p, A, B)$ under the assumption $-1 \le B < 0$.

I. Introuction

Let S(p) be the class of functions $f(z) = z^p + \sum_{n=z}^{\infty} a_{n+p} z^{n+p}$ which are analytic in the unit disc $E = \{z : |z| < 1\}$. For $-1 \le B < A \le 1$ let $P^*(p, A, B)$ be the class of those functions f of S(p) which satisfy the condition

$$\left| \left(zf'(z)/f(z) - p \right)/(Ap - Bzf'(z)/f(z) \right| < 1 \text{ for } z \in E$$
 (1)

Let T_p denote the sub-class of S(p) consisting of p-valent functions in E and having Taylor expansion of the form

$$f(z) = z^p - \sum_{n=k}^{\infty} |a_{n+p}| |z^{n+p}|, \ k \ge 2$$
.

Let $P_k(p, A, B) = P^*(p, A, B) \cap T_p$

Goel and Sohi [1], Sarangi and Uralegaddi [2], Shukla and Dashrath [3], Herb Silverman [4] have studied certain sub-classes of analytic functions with negative coefficients and Vinod Kumar [5] has recently studied the class of univalent functions with negative and missing coefficients.

In this paper, under the assumption $-1 \le B < 0$, and $k \ge 2$, we obtain representation formula, coefficient estimate, distortion theorem, covering theorem and radius of convexity for $P_k(p, A, B)$

We also obtain the class preserving integral operators of the form

$$F(z) = \frac{c + p}{z^c} \int_0^z t^{c-1} f(t) dt, \quad c > -1$$
 (2)

^{*} Received September 2, 1988.

for $P_k(p, A, B)$. Conversely wher $F \in P_k(p, A, B)$ we determine the radiue of p-valence of f defined by (2). Lastly we show that the class $P_k(p, A, B)$ is closed under "Arithmetic mean" and "convex linear combinations".

2. Representation Formula

Theorem ! The function $f(z) = z^p - \sum_{n=k}^{\infty} |a_{n+p}| z^{n+p}$ belongs to $P_k(p, A, B)$ if and only if it can be expressed in the form

$$f(z) = z^{p} \exp\left[p(A-B)\int_{0}^{z} \frac{t^{k-1}\phi(t)}{1 + Bt^{k}\phi(t)} dt\right]$$

where $\phi(z)$ is analytic in E and satisfies $|\phi(z)| \le 1$ for $z \in E$.

Proof Let $f(z) \in P_{\nu}(p, A, B)$. Then

$$|(zf'(z)/f(z)-p)/(Ap-Bzf(z)/f(z)| < 1$$
 for $z \in E$

and since the absolute value vanishes for z = 0, we have

$$(zf(z)/f(z)-p)/(Ap-Bzf'(z)/f(z))=z^k\phi(z)$$
 (1)

where $\phi(z)$ is analytic function in E and satisfies $|\phi(z)| \le 1$ for $z \in E$. $(zf'(z)/f(z)-p)/(Ap-Bzf'(z)/f(z)) = z^k\phi(z)$ implies

$$\frac{1}{p(A-B)} \left[\frac{z^{-p} f(z) - pz^{-p-1} f(z)}{z^{-p} f(z)} \right] = \frac{z^{k-1} \phi(z)}{1 + Bz^k \phi(z)}$$

which on integrating and simplifying gives

$$f(z) = z^{p} \exp \left[p(A - B) \int_{0}^{z} \frac{t^{k-1}\phi(t)}{1 + Bt^{k}\phi(t)} dt \right]$$

conversly suppose

$$f(z) = z^{p} \exp\left(p(A - B)\int_{0}^{z} \frac{t^{k-1}\phi(t)}{1 + Bt^{k}\phi(t)} dt\right)$$
 (2)

implies $\log z^{-p} \cdot f(z) = p(A - B) \int_0^z \frac{t^{k-1} \phi(t)}{1 + B^k \phi(t)} dt$

So differentiating and simplifying we get

$$\frac{1}{p(A-B)} \left(\frac{zf'(z)}{f(z)} - p \right) = \frac{z^k \phi(z)}{1 + Bz^k \phi(z)} \tag{3}$$

$$\left|\frac{zf'(z)}{f(z)}-p\right|=p(A-B)\frac{\left|z^k\phi(z)\right|}{\left|1+Bz^k\phi(z)\right|}<\frac{p(A-B)}{\left|1+Bz^k\phi(z)\right|}.$$

Since $|z^k\phi(z)| < 1$.

Substituting $z^k \phi(z)$ from (1) and simplyfying we get

$$|(zf'(z)/f(z)-p)/(Ap-Bzf'(z)/f(z))| < 1$$
.

Hence $f(z) \in P_{k}(p, A, B)$.

3. Coefficient Estimate

Theorem 2 A function $f(z) = z^p - \sum_{n=k}^{\infty} |a_{n+p}| |z^{n+p}|$ is in $P_k(p, A, B)$ if and only

$$\sum_{n=k}^{\infty} \left[(1-B)n + (A-B)p \right] |a_{n+p}| \leq (A-B)p.$$

Proof Suppose $\sum_{n=k}^{\infty} ((1-B)n + (A-B)p) |a_{n+p}| \le (A-B)p$ is true. Then

$$\left|\frac{zf'(z)}{f(z)}-p\right|-\left|Ap-B\frac{zf'(z)}{f(z)}\right|<0$$

provided

if

$$\left| -\sum_{n=k}^{\infty} n \, a_{n+p} z^{n+p} \, \right| - \, \left| (A-B) \, p \, z^p + (B-A) \, p \, \sum_{n=k}^{\infty} \, \left| a_{n+p} \, \left| z^{n+p} + B \sum_{n+k}^{\infty} n \, \left| a_{n+p} \, \left| z^{n+p} \right| \right| < 0 \right|$$

For z = r < 1 the left hand side of the above inequality is bounded above by

$$\sum_{n=k}^{\infty} n |a_{n+p}| r^{n+p} - (B-A) p \sum_{n=k}^{\infty} |a_{n+p}| r^{n+p} - B \sum_{n=k}^{\infty} n |a_{n+p}| r^{n+p} - (A-B) p r^{p}$$

$$= \sum_{n=k}^{\infty} \left[(1-B) n + (A-B) p \right] |a_{n+p}| r^{n+p} - (A-B) p r^{p}$$

$$< \sum_{n=k}^{\infty} \left[(1-B) n + (A-B) p \right] |a_{n+p}| - (A-B) p < 0.$$

Hence $f(z) \in P_k(p, A, B)$.

Conversely suppose that $f(z) \in P_k(p, A, B)$ then

$$\left|\left(zf'(z)/f(z)-p\right)/(Ap-Bzf'(z)/f(z))\right|$$

$$= \left| \frac{-\sum_{n=k}^{\infty} n |a_{n+p}| z^{n+} \sum_{n=k}^{\infty} n |a_{n+p}| z^{n+}}{(A-B) p z^{p} + \sum_{n=k}^{\infty} \left[(B-A) p + Bn \right] |a_{n+p}| z^{n+p}} \right| < 1 \quad \text{for } z \in E$$
 (1)

Since $Re(z) \le |z|$ for all z, we have

$$\operatorname{Re}\left\{\frac{\sum_{n=k}^{\infty} n |a_{n+p}| z^{n+p}}{(A-B) p z^{p} + \sum_{n=k}^{\infty} ((B-A) p + Bn) |a_{n+p}| z^{n+p}}\right\} < 1$$
 (2)

Choose values of z on real axis so that $\frac{zf'(z)}{f(z)}$ is real. Upon clearing

the denominator of (2) and letting $z \rightarrow 1$ through real values, have

$$\sum_{n=k}^{\infty} n \left| a_{n+p} \right| \leq (A-B) p + \sum_{n+k}^{\infty} \left[(B-A) p + Bn \right] \left| a_{n+p} \right|,$$

So
$$\sum_{n=k}^{\infty} \left((1-B)n + (A-B)p \right) |a_{n+p}| \le (A-B)p$$
. The function

$$f(z) = z^{p} - \sum_{n=k}^{\infty} \frac{(A-B) p z^{n+p}}{((1-B) n + (A-B) p)}$$

is an extremal function.

4. Distortion Properties

Theorem 3 If $f(z) \in P_k(p, A, B)$ then for |z| = r

$$r^{p} - \frac{(A-B) pr^{p+k}}{((1-B)+(A-B) p)} \leq |f(z)| \leq r^{p} + \frac{(A-B) pr^{p+k}}{((1-B)+(A-B) p)}$$

$$pr^{p-1} - \frac{p(p+1)(A-B)r^{n+k-1}}{((1-B)+(A-B)p)} \le |f'(z)| \le pr^{p-1} + \frac{p(p+1)(A+B)r^{n+k-1}}{((1-B)+(A+B)p)}.$$

Proof From theorem (2) we have

$$\sum_{n=k}^{\infty} \left[(1 - B) n + (A - B) p \right] |a_{n+p}| < (A - B) p.$$
 (1)

Now since (1-B)n > (1-B) we have

$$((1-B)+(A-B)p)\sum_{n=k}^{\infty}|a_{n+p}| \leq \sum_{n=k}^{\infty}((1-B)n+(A-B)p)|a_{n+p}| \leq (A-B)p$$

So

$$\sum_{n=k}^{\infty} |a_{n+p}| \le \frac{(A-B)p}{((1-B)+(A-B)p)}.$$
 (2)

Now we have

$$|f(z)| = |z^{p} - \sum_{n=k}^{\infty} |a_{n+p}| |z^{n+p}| \le r^{p} + \frac{(A-B) pr^{k+p}}{((1-B) + (A-B) p)}$$
 (3)

and

$$|f(z)| \ge |z^{p}| - \sum_{n=k}^{\infty} |a_{n+p}| |z|^{n+p} = r^{p} - \frac{(A-B) pr^{k+p}}{((1-B)+(A-B) p)}.$$
 (4)

From results (3) and (4) we have

$$r^{p} - \frac{(A-B) p r^{r+p}}{((1-B) + (A-B) p)} \le r^{p} + \frac{(A-B) p r^{k+p}}{((1-B) + (A-B) p)} . \tag{x}$$

Further

$$|f'(z)| \le pr^{p-1} + \sum_{n=k}^{\infty} (n+p) |a_{n+p}| r^{n+p-1}$$
 (5)

and

$$|f'(z)| \le pr^{p-1} - \sum_{n=k}^{\infty} (n+p) |a_{n+p}| r^{n+p-1}$$
 (6)

Using the result $\sum_{n=k}^{\infty} |a_{n+p}| \le \frac{(A-B)p}{((1-B)+(A-B)p)}$ in the result $\sum_{n=k}^{\infty} ((1-B)n+$

(A-B)p $|a_{n+p}| \le (A-B)p$ of theorem 2 and simplifying we have

$$\sum_{n=k}^{\infty} (n+p) |a_{n+p}| \leq \frac{p(p+1)(A-B)}{((1-B)+(A-B)p)}.$$

Substituting this value of $\sum_{n=k}^{\infty} (n+p) |a_{n+p}|$ in (5) and (6) we have

$$pr^{p-1} - \frac{p(p+1)(A-B)r^{k+p-1}}{(1-B)+(A-B)p} \le |f'(z)|$$

$$\leq pr^{p-1} + \frac{p(p+1)(A-B)r^{k+p-1}}{(1-B)+(A-B)p}. \tag{y}$$

Equality in (x) and (y) is obtained if we take

$$f(z) = z^{p} - \frac{(A+B) p z^{k+p}}{((1-B) + (A-B) p)}.$$

Corollary If $f \in P_k(p, A, B)$ then the disc E is mapped by f onto a domain that contains the disc $|w| < \frac{1-B}{(1-B)+(A-B)p}$. The result is sharp

with extremal function $f(z) = \frac{(A-B) p z^{k+p}}{(1-B) + (A-B) p}$

Proof By letting $r \rightarrow 1$ in the L.H.S. of inequality (x) we have

$$1 - \frac{(A-B)p}{((1-B)+(A-B)p)} \leq |f(z)|$$

hence

$$\frac{\sqrt{(1-B)}}{(1-B)+(A-B)p} \leq |f(z)|$$

so f maps the disc E onto a domain that contains the disc

$$|w| < \frac{1-B}{((1-B)+(A-B)p)}.$$

5. Integral Operators

Theorem 4 Let c be a real number such that c > -1. If $f \in P_k(p, A, B)$ then the function F defined by $F(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt$ also belongs to $P_k(p, A, B)$.

Proof Let
$$f(z) = z^{p} - \sum_{n=k}^{\infty} |a_{n+p}| |z^{n+p}|$$
. Then

$$F(z) = \frac{c + p}{z^c} \int_0^z t^{c-1} f(t) dt$$

implies

$$F(z) = z^{p} - \sum_{n=k}^{\infty} \frac{p+c}{n+p+c} |a_{n+p}| z^{n+p} = z^{p} - \sum_{n=k}^{\infty} |b_{n+p}| z^{n+p} ,$$

where

$$|b_{n+p}| = \frac{(p+c)}{n+p+c} |a_{n+p}|.$$

- 345 -

Therefore using theorem (2) for the coefficients of F(z) we have

$$\sum_{n=k}^{\infty} \left[(1-B) n + (A-B) p \right] \left| b_{n+p} \right| = \sum_{n=k}^{\infty} \left[(1-B) n + (A-B) p \right] \left(\frac{c+p}{n+p+c} \right) \left| a_{n+p} \right|$$

$$\leq (A-B) p \text{ since } \frac{c+p}{n+c+p} < 1 \text{ and } f \in P_k(p, A, B).$$

Hence $F \in P_k(p, A, B)$.

6. Radius of Convexity

Theorem 5 If $f(z) \in P_k(p, A, B)$, then f(z) is p-valently convex in the disc $|z| < R_p$, where

$$R_{p} = \inf_{n \geq k} \left\{ \left(\frac{(1-B)n + (A-B)p}{(A-B)p} \right) \left(\frac{p}{n+p} \right)^{2} \right\}^{\frac{1}{n}} \text{ for } |z| < R_{p}.$$

Proof It is sufficient to show that $\left| \left(1 + \frac{zf''(z)}{f'(z)} \right) - p \right| \le p$ for $|z| < R_p$.

Now $f(z) = z^{p} - \sum_{n=k}^{\infty} |a_{n+p}| |z^{n+p}|$. So

$$1 + \frac{zf''(z)}{f'(z)} - p = \frac{-\sum_{n=k}^{\infty} n(n+p) |a_{p+p}| z^n}{p - \sum_{n=k}^{\infty} (n+p) |a_{n+p}| z_n}.$$

Therefore

$$|1 + \frac{zf''(z)}{f'(z)} - p| \le p \text{ if } \frac{\sum_{n=k}^{\infty} n(n+p) ||\gamma_{j+n}|| ||z||^n}{p - \sum_{n=k}^{\infty} (n+p) ||a_{n+p}|| ||z||^n} \le p$$

or

$$\sum_{n=k}^{\infty} \left(\frac{n+p}{p} \right)^{2} |a_{n+p}| |z|^{n} \le 1 . \tag{1}$$

From theorem 2 we have

$$\sum_{n=k}^{\infty} \left[\frac{(1-B)n+(A-B)p}{(A-B)p} \right] |a_{n+p}| \leq 1.$$

Hence (1) will be satisfied if

$$\left(\frac{n+p}{p}\right)^2 |z|^n \le \left(\frac{(1-B)n+(A-B)p}{(A-B)p}\right)$$

or if

$$|z| \leq \left(\left\{ \frac{(1-B)n + (A-B)p}{(A-B)p} \right\} \left(\frac{p}{n+p} \right)^2 \right)^{\frac{1}{n}}.$$

So f(z) is p-valently convex in the disc

$$|z| < R_p = \inf_{n > k} \left[\left\{ \frac{(1-B)n + (A-B)p}{(A-B)p} \right\} \left(\frac{p}{n+p} \right)^2 \right]^{\frac{1}{n}}.$$

7. Closure Properties

In this section, we show that the class $P_k(p, A, B)$ is closed under 'Ari-thmetic mean' and 'Convex linear combinations'.

Theorem 8 If
$$f_j(z) = z^p - \sum_{n_j=k}^{\infty} |a_{n_j+p}| z^{n+p} \in P_k(p, A, B)$$
, then $h(z) = z^p - \sum_{n=k}^{\infty} |b_{b+p}| z^{n+p}$

also belongs to $P_k(p, A, B)$, where $b_{n+p} = \frac{1}{m} \sum_{i=1}^{n} a_{n_i+p}$.

Proof Since $f_i \in P_k(p, A, B)$ it follows from theorem 2 that

$$\sum_{n_{j}=k}^{\infty} \left[(1 - B) n_{j} + (A - B) p \right] |a_{n_{j}+p}| - (A - B) p \le 0, \quad j = 1, 2, \dots m.$$

and

$$b_{n+p} = \frac{1}{m} \sum_{j=1}^{m} a_{n_j+p}$$
.

Therefore we have $\sum_{n=k}^{\infty} \left[(1-B)n + (A-B)p \right] |b_{n+p}|$ $= \sum_{n=k}^{\infty} \left[(1-B)n + (A-B)p \right] \left| \frac{1}{m} \sum_{j=1}^{m} a_{n_j+p} \right|$ $\leq \sum_{n=k}^{\infty} \left[(1-B)n + (A-B)p \right] \frac{1}{m} \sum_{j=1}^{m} |a_{n_j+p}|,$ $\leq (A-B)p \text{ (Since } |b_{n+p}| \leq \frac{1}{m} \sum_{j=1}^{m} |a_{n_j+p}|)$

Hence from theorem 2 h(z) belongs to $P_k(p, A, B)$.

Theorem 7 Let $f_p(z) = z^p$ and $f_{n+p}(z) = z^p - \frac{(A-B)p z^{n+p}}{((1-B)n + (A-B)p)}$ Then $f \in$

 $P_k(p, A, B)$ if and only if it can be expressed in the form

$$f(z) = \lambda_1 f_p(z) + \sum_{n=k}^{\infty} \lambda_n f_{n+p}(z)$$

where $\lambda_n \ge 0$ and $\lambda_1 + \sum_{m=k}^{\infty} \lambda_m = 1$.

Proof Let us suppose that

$$f(z) = \lambda_1 f_p(z) + \sum_{n=k}^{\infty} \lambda_n f_{n+p}(z)$$

$$= (1 - \sum_{n=k}^{\infty} \lambda_n) z^p + \sum_{n=k}^{\infty} \lambda_n (z^p - \frac{(A-B) p z^{n+p}}{(1-B) n + (A-B) p})$$

$$=z^{p}-\frac{\sum_{n=k}^{\infty}\lambda_{n}(A-B)pz^{n+p}}{\left(\left(1-B\right)n+\left(A-B\right)p\right)}.$$

Then from theorem 2 we have

$$\sum_{n=k}^{\infty} \left[(1-B)n + (A-B)p \right] \left\{ \frac{(A-B)p\lambda_n}{(1-B)n + (A-B)p} \right\} \le (A-B)p \sum_{n=k}^{\infty} \lambda_n \le (A-B)p$$
since
$$\sum_{n=k}^{\infty} \lambda_n = 1 - \lambda_1 \le 1.$$

Hence $f \in P_k(p, A, B)$.

Conversely, suppose $f \in P_k(p, A, B)$. It follows from theorem 2 that $|a_{n+p}|$

$$\leq \frac{(A-B)p}{(1-B)n+(A-B)p}$$
. Setting

$$\lambda_n = \left[\frac{(1-B)n + (A-B)p}{(A-B)p} \right] \tag{1}$$

where n = k, k + 1 and $\lambda_1 = 1 - \sum_{n=-k}^{\infty} \lambda_n$ we have

$$\begin{split} f(z) &= z^p - \sum_{n=k}^{\infty} \left| a_{n+p} \right| z^{n+p} = z^p - \sum_{n=k}^{\infty} \lambda_n z^{n+p} + \sum_{n=k}^{\infty} \lambda_n z^{n+p} - \frac{\sum_{n=k}^{\infty} \lambda_n (A-B) \, p \, z^{n+p}}{\left(\left(\, 1 - B \right) n + \left(A - B \right) \, p \right)} \\ &= z^p \left(\, 1 \, - \sum_{n=k}^{\infty} \lambda_n \right) \, + \sum_{n=k}^{\infty} \lambda_n \left[\, z^p \, \frac{(A-B) \, p \, z^{n+p}}{\left(\left(\, 1 - B \right) n + \left(\, B - A \right) \, p \right)} \, \right] \\ &= \lambda_1 f_p + \sum_{n=k}^{\infty} \lambda_n f_{n+p}(z) \, . \end{split}$$

Hence the theorem.

References

- [1] R. M. Goel and N. S. Sohi (1981), Indian J. Pure Appl., Math 12, 844-853
- [2] S. M. Sarangi and B. A. Uralagaddi (1978), Rendiconti Accademia Nazionaledei Lincei, LXV 38-42.
- [3] S.L. Shukla and Dashrath (1982), Soochow, J. Math. 8, 179-188.
- (4) Herb. Silverman (1975), Proc. Amer. Math. Soc. 51, 109-116.
- [5] Vinod Kumar (1984), Journal of Mathematical Research and Exposition, Volume 4, No.1, 27-33.