The Radius of Univalalence of Convex Combinations of Certain Analytic Functions*

B. A. Uralegaddi and H.S. Patil

(Dept. Math., Karnatak University, Dharwad-580003, India)

For a > 0, the convex combinations f(z) = (1 - a)F(z) + azF'(z), where F belongs to different subclasses of univalent functions with fixed second coefficients are considered and the radius for which f is in the same class is determined.

I. Introduction

The writting of this paper has been motivated by recent papers of Al-Amiri [1] and Noor, Aloboudi and Aldihan [5].

Let S denote the class of all analytic and univalent functions F in the unit disk $E = \{z : |z| < 1\}$ which are normalized by the conditions F(0) = 0 and F'(0) = 1. Let S^* and K denote subclasses of S consisting of starlike and convex functions respectively and \overline{S} the subclass of S consisting of functions F with the property that Re(F'(z)) > 0 for $z \in E$. Livingston [2] has studied the mapping properties of f: $f(z) = \frac{1}{2}(zF(z))'$ where F belongs to S^* , K or \overline{S} . Al-Amiri [1] has improved most of Livingston's results by involving the second coefficient in the power expansion of F(z).

In this paper we shall study the mapping properties of $f_{:}$

$$f(z) = (1 - a) F(z) + azF'(z), a > 0$$

when F belongs to S^* , K or S, with fixed second coefficient. By taking $a = \frac{1}{2}$ we obtain the earlier results of Al-Amiri [1]. Also some of the results obtained here will generalize the earlier results due to Livingston [2] and Noor, Aloboudi and Aldihan [5].

2. Preliminary results

Lemma | Let $\varphi(z) = h_1 + h_2 z + \cdots$ be an analytic map of the unit disk E into itself. Then

^{*}Received Jan. 3, 1989.

$$|\varphi(z)| \leq \frac{(|b_1|+|z|)}{(1\times|b_1||z|)}$$
 for all z in E.

This lemma may be found in (4), p. 167.

Lemma 2 Let $w(z) = z\varphi(z) = b_1z + b_2z^2 + \cdots$ be an analytic map of the unit disk E into itself. Then

$$|w'(re^{i\theta})| \leq \frac{(r+|\varphi(re^{i\theta})|)(1-r|\varphi(re^{i\theta})|)}{(1-r^2)}.$$

This lemma is due to Al-Amiri [1].

Lemma 3 If $P(z) = 1 + bz + \sum_{n=2}^{n} a_n z^n$ is regular and has Re(P(z)) > 0 for |z| < 1, then

$$\operatorname{Re}(P(z)) \ge \frac{1 - |z|^2}{1 + b|z| + |z|^2}$$
 where $b \ge 0$.

Further this result is sharp for each value of b. $0 \le b \le 2$ by considering the functions $P_b(z) = \frac{1-z^2}{1-bz+z^2}$.

This lemma is due to Tepper [6].

Theorem A If $P(z) = 1 + bz + \sum_{n=2}^{\infty} a_n z^n$ is regular and has Re(P(z)) > 0 for |z| < 1, then

$$|P'(z)| \le \frac{\operatorname{Re}(P(z))}{1-|z|^2} \left\{ \frac{b|z|^2+4|z|+b}{|z|^2+b|z|+1} \right\}, \text{ where } b \ge 0$$

This theorem is due to McCarty (3).

3. Main results

Without loss of generality, we will replace the second coefficient a_2 in the power expansion of F(z) by $|a_2|$ and prove the following theorem:

Theorem | Let $F(z) = z + 2pz^2 + \cdots$ be a member of the class S^{\bullet} . Let f(z) be defined by f(z) = (1 - a)F(z) + azF'(z), a > 0. Then $p \le 1$ and f(z) is starlike for $|z| < r_0$, where r_0 is the least positive root satisfying $(1 - 2a)r^4 + 2pr^3 + 6ar^2 - 2p(1 - 2a)r - 1 = 0$. This result is sharp.

Proof Since $F \in S^{\bullet}$, it is well known that $2p \le 2$ or $p \le 1$. We can write

$$f(z) = (1 - a) F(z) + azF'(z)$$
 (1)

as

$$f(z) = az^{2-\frac{1}{a}} \left(z^{\frac{1}{a}-1} F(z)\right)'$$

and from this it follows that

$$_{1}F(z) = \frac{1}{a}z^{1-\frac{1}{a}}\int_{0}^{z}z^{\frac{1}{a}-2}f(z)dz.$$
 (2)

A computation of (2) yields

$$z\frac{F'(z)}{F(z)} = \left(1 - \frac{1}{a}\right) + \frac{z^{\frac{1}{a} - 1} f(z)}{\int_0^z \frac{1}{z^{\frac{1}{a}} - 2} f(z) dz}$$
 (3)

Since $F \in S^*$, the equation (3) may be written as

$$h(z) \int_0^z z^{\frac{1}{a}-2} f(z) dz = (1 - \frac{1}{a}) \int_0^z z^{\frac{1}{a}-2} f(z) dz + z^{\frac{1}{a}-1} f(z)$$

where $z \frac{F'(z)}{F(z)} = h(z)$.

Differentiating again we obtain

$$z\frac{f'(z)}{f(z)} = h(z) + h'(z) \frac{\int_0^z z^{\frac{1}{a} - 2} f(z) dz}{z^{\frac{1}{a} - 2} f(z)}.$$
 (4)

From theorem A

$$|h'(z)| \le \frac{\operatorname{Re}h(z)}{(1-r^2)} \left\{ \frac{2pr^2+4r+2p}{r^2+2pr+1} \right\}, |z| = r.$$

Then from (4) we have

$$\operatorname{Re}\left(z\frac{f'(z)}{f(z)}\right) \ge \operatorname{Re}h(z) \left\{1 - \frac{2(pr^2 + 2r + p)}{(1 - r^2)(r^2 + 2pr + 1)} \left| \frac{\int_0^z z^{\frac{1}{a} - 2} f(z) \, dz}{z^{\frac{1}{a} - 2} f(z)} \right. \right\}$$
 (5)

From (1) and (2), we obtain
$$\frac{z^{\frac{1}{a}-1} f(z)}{\int_{0}^{z} z^{\frac{1}{a}-2} f(z) dz} = \frac{az(z^{\frac{1}{a}-1} F(z))'}{a(z^{\frac{1}{a}-1} F(z))} = z\frac{F'(z)}{F(z)} + \frac{1}{a} - 1 = h(z) + \frac{1}{a} - 1.$$

Since $F \in S^{\bullet}$, by lemma 3. $\operatorname{Re} h(z) \ge \frac{1 - r^2}{1 + 2 nr + r^2}$. Thus

$$\left| \frac{z^{\frac{1}{a}-1} f(z)}{\int_{0}^{z} z^{\frac{1}{a}-2} f(z) dz} \right| \ge \operatorname{Re} \left(\frac{1}{a} - 1 \right) + h(z) \right) \ge \frac{1}{a} - 1 + \frac{1 - r^{2}}{1 + 2 pr + r^{2}}$$

$$= \frac{\left(\frac{1}{a} - 1 \right) \left(1 + 2 pr + r^{2} \right) + 1 - r^{2}}{\left(1 + 2 pr + r^{2} \right)} . \tag{6}$$

Inequality (5) in connection with (6) gives

$$\operatorname{Re}\left(z\frac{f'(z)}{f(z)}\right) \ge \operatorname{Re}h(z) \left[1 - \frac{2r(pr^2 + 2r + p)}{(1 - r^2)\left\{\left(\frac{1}{a} - 1\right)(1 + 2pr^2) + 1 - r^2\right\}}\right]$$

$$= \operatorname{Re}h(z) \left[\frac{(1 - r^2)\left\{\left(\frac{1}{a} - 1\right)(1 + 2pr + r^2) + 1 - r^2\right\} - 2r(pr^2 + 2r + p)}{(1 - r^2)\left\{\left(\frac{1}{a} - 1\right)(1 + 2pr + r^2) + 1 - r^2\right\}}\right]$$
(7)

The right hand side of (7) is positive for $r < r_0$, where r_0 is the least positive root of

$$(1-2a)r^4+2pr^3+6ar^2-2p(1-2a)r-1<0, (8)$$

which gives the repuired root.

For P=1, $(1-2a)r^4+2r^3+6ar^2-2(1-2a)r-1<0$ and we get the radius of starlikeness obtained by Noor, Aloboudi and Aldihan (5). Putting $a=\frac{1}{2}$ and p=1 in (8) we get $2r^3+3r^2-1<0$ which implies $r_0=\frac{1}{2}((2))$.

To prove the result is sharp, consider the function

$$F(z) = \frac{z}{1 - 2pz + z^2} = z + 2pz^2 + \cdots$$

It is easy to see that $F \in S^*$. Further we have

$$f(z) = (1-a)F(z) + azF'(z) = \frac{z(1-2p(1-a)z+(1-2a)z^2)}{(1-2pz+z^2)^2}.$$

A computation yields

$$z\frac{f'(z)}{f(z)} = \frac{1 - 2p(1 - 2a)z - 6az^2 + 2pz^3 - (1 - 2a)z^4}{(1 - 2p(1 - a)z + (1 - 2a)z^2)(1 - 2pz + z^2)}$$

and it follows that $z \frac{f'(z)}{f(z)} = 0$ for $z = -r_0$. This shows that f(z) is not starlike in any circle for |z| < r if $r > r_0$.

Theorem 2 Let $F(z) = z + pz^2 + \cdots$ be a member of the class K and f(z) = (1-a)F(z) + azF'(z) for a > 0. Then $p \le 1$ and f(z) is convex for $|z| < r_0$, where r_0 is the same as in theorem 1. This result is sharp.

Proof Since F(z) is convex, it is well known that $p \le 1$. To show that f(z) is convex for $|z| < r_0$, we observe that

$$zf'(z) = az^{2-\frac{1}{a}} \left(\frac{1}{2^{a}} - 1 \left(zF'(z) \right) \right)'. \tag{9}$$

Since zF'(z) is starlike in E, theorem 1 and (9) shows that zf'(z) is starlike for $|z| < r_0$, where r_0 is the same as in theorem 1. Thus it follows that f(z) is convex in $|z| < r_0$.

The result is sharp for the function F(z) for which

$$zF'(z) = \frac{z}{1 - 2pz + z^2}$$
, where $p \le 1$.

It is easy to verify that $F \in K$. Using (9) and a similar computation to that performed in the proof of theorem 1, one gets

$$z\frac{f''(z)}{f'(z)} + 1 = \frac{1 - 2p(1 - 2a)z - 6az^2 + 2pz^3 - (1 - 2a)z^4}{(1 - 2pz + z^2)(1 - 2p(1 - a)z + (1 - 2a)z^2)}.$$

Hence $z \frac{f''(z)}{f'(z)} + 1 = 0$ for $z = -r_0$. This shows that f(z) is not convex in any

circle for |z| < r if $r > r_0$.

Theorem 3 Let $F(z) = z + pz^2 + \cdots$ be a member of the class \overline{S} and f(z) = (1-a)F(z) + azF'(z) for a > 0. Then $p \le 1$ and Re(f'(z)) > 0 for $|z| < r_0$, where r_0 is the smallest positive root satisfying

$$r^4 + 2p(1+a)r^3 + 4ar^2 - 2p(1-a)r - 1 = 0$$
.

This result is sharp.

Proof Let $F'(z) = g(z) = 1 + 2pz + \cdots$ where Re(g(z)) > 0 for |z| < 1. Then it is well know that $2p \le 2$ for $p \le 1$ (see [4], p. 170). Also we have

$$f'(z) = F'(z) + azF''(z) = g(z) + azg'(z)$$
.

To show that $\operatorname{Re}(f'(z)) > 0$ for $|z| < r_0$, it suffices to show that $\operatorname{Re}(g(z)) > a |zg'(z)|$ for $|z| < r_0$. (10)

Since Re(g(z)) > 0, there exists an analytic function w(z) in E such that |w(z)| < 1 and

$$\frac{g(z)-1}{g(z)+1} = w(z) = z\varphi(z) = pz + \cdots$$

It follows that

$$g(z) = \frac{1 + w(z)}{1 - w(z)}. (11)$$

Thus

$$g'(z) = \frac{2w'(z)}{(1-w(z))^2}$$

Using the lemma 2, we have

$$|g'(z)| \leq \frac{2(r+|\varphi(z)|)(1-|w(z)|)}{(1-r^2)|1-w(z)|^2}$$
(12)

where $\varphi(z) = p + \cdots$ and |z| = r. Also from (11) we have

$$\operatorname{Re}(g(z)) = \frac{1 - |w(z)|^2}{|1 - w(z)|^2} . \tag{13}$$

In view of (12) and (13) inequality (10) is satisfied if

$$\frac{1 - |w(z)|^2}{|1 - w(z)|^2} \ge 2ar \frac{(r + |\varphi(z)|)(1 - |w(z)|)}{(1 - r^2)|1 - w(z)|^2} \quad \text{for } |z| < r_0.$$

Simplification of (14) yields

$$\frac{1-r^2}{2ar} \geq \frac{r+|\varphi(z)|}{1+r|\varphi(z)|}.$$

Using lemma 1 in the above inequality, we get

$$\frac{1-r^2}{2ar} \ge \frac{p+2r+pr^2}{1+2rp+r^2}.$$

This reduces to $r^4 + 2p(1+a)r^3 + 4ar^2 - 2p(1-a)r - 1 < 0$, which gives the required root r_0 .

The result is sharp for F(z) for which

$$F'(z) = \frac{1-z^2}{1-2pz+z^2} = 1+2pz+\cdots$$

It is easy to see that $F \in \overline{S}$. Further

$$f'(z) = F'(z) + azF''(z)$$

$$= \frac{1 - 2p(1 - a)z - 4az^2 + 2p(1 + a)z^3 - z^4}{(1 - 2pz + z^2)^2}.$$

Then we have f'(z) = 0 for $z = -r_0$. This shows that Re(f'(z)) > 0 in any circle |z| < r if $r > r_0$.

References

- [1] H. S. Al-Amiri, Colloq. Math. 28(1973), 133-139.
- [2] A. E. Livingston, Proc. Amer. Math. Soc. 17 (1966), 352-357.
- [3] C. P. McCarty, Proc. Amer. Math. Soc. 35(1) (1972), 211-216.
- [4] Z. Nehari, Conformal mapping, New-York 1952.
- [5] K.I.Noor, F. M. Aloboudi and N. Aldihan, Internat. J. Math. Math. Sci. Vol. 6 No 2(1983), 335-340.
- [6] D. E. Tepper, Tran. Amer. Math. Soc. 150(1970), 519-528.