Asymptotic Normality of Kernel Density Estimates*

Xue Liugen

(Xuchang Teachers College)

Let X_1, \dots, X_n be a random samples taking values in \mathbb{R}^1 and having common density function f(x). A class of estimators of f(x) proposed by Rosenblatt^[1] has the form

$$f_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x - X_i}{h_n}\right)$$

where K is a probability density function on \mathbb{R}^1 and $\{h_n\}$ is a sequence of positive numbers converging to zero. Call $f_n(x)$ the kernel estimator of f(x). Many autors studied the large sample properties of $f_n(x)$ under the independent samples. For examples: Parzen^[2] and Sun^[3] showed the asymptotic normality of $(f_n(x) - Ef_n(x))/\sqrt{\operatorname{Var} f_n(x)}$ respectively. Our paper aims to show the asymptotic normality of joint distribution of $\sqrt{nh_n}(f_n(x_1) - f(x_1), \dots, f_n(x_k) - f(x_k))$ under the condition that samples $\{X_n, n \ge 1\}$ is a sequence of stationary, φ -Mixing variables. Our main result is

Theorem Suppose that (I) $\sum_{n=1}^{\infty} \varphi(n) < \infty$; (II) $(1+|x|)K(x) < C < \infty$; $\int |y|K(y) \, dy < \infty$; (III) $nh_n \to \infty$, $nh_n^3 \to 0$, as $n \to \infty$; (IV) f(x) satisfies Lipschitz condition and joint density $g_i(y_1, y_2)$ of (X_1, X_i) is a continuous bounded function for any i > 1. Then $\sqrt{nh_n}(f_n(x_1) - f(x_1), \cdots, f_n(x_k) - f(x_k))$ converges in distribution to Z for the distinct point (x_1, \dots, x_k) where $f(x_i) > 0$ $(i = 1, \dots, k)$. Where Z is a k-dimensional normal vector and having mean vector 0 and diagonal covariance matric $B = (b_{ij})$, $b_{ii} = f(x_i) \int K^2(y) \, dy$, $i = 1, \dots, k$.

References

- [1] Rosenblatt, M., Ann. Math. Statist., 27(1956), 832-837.
- [2] Parzen, E., AMS, 33(1962), 1065-1076.
- [3] Sun Zhigang, Acta. Math. Sinica, 27(1984), 769-782.

[•] Received Mat. 18, 1988. Revised to this note May 10, 1990.