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Variational Methods In Random Analysis*
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Abstract In this paper, we consider the random variational inequality (its
definition in the following), the methods we used belong to functional analysis.

| . Preliminaries

Thoughout this paper, (Q, £) denotes a measurable space. E is a tolologi-
cal vector space. @, Q— 2% is called measurable if for any open subset B of X,
@ '(B): ={0eQ, Flo(\B£P }¢Z. Notice that &, Q2% if yoeQ, ®(w)eK(X),
then @ is measurable if and only if @ '(C)eZ, for any closet subset C of X,
in which 2% is the family of all subset of X,CD(X) all nonempty closed subset of
X, CB( X) all nonempty bounded closed subsets of X, K(X) all nonempty compact
subsets of X, respectively. A mapping f: Qx X—2" is called a random operator
if for any xeX, f(-, x) is mesurable. Random operator T, Q X X—Y called continu-
ous (compact, &tc) if yeweQ, f(w, + )is continuous (compact, etc). A measurable
mapping f; Q— X is called a measurable selector of a measurable mapping F. Q—
CD(X), if yseQ,f(e)€F(e). Notice that when S is a separable closed subset
of E, F,Q—~2° is measurable and F(w) is compact, then F has a measurable se-
lector . A measurable mapping x: Q— X is called a random fixed point of a ran-
dom operator T; Q x X—»z", if yoeQ, x(w)eT (o, f(w)). Random mapping G; Qx X—
—27% called random KKM mapping, if yweQ, Glw, ) is KKM. In this paper, let
X be usually a convex subset

2 . Random variational inequality’

Theorem | Let E be a T.V.S. (i.e, topological vector space), G: Qx X—
2fis a réndom KKM mapping amd yoeQ, xX, Glo,x) is finite closed(i.e, the
interesection of G(w, x) with any finite dimensional subspace of E is‘closed),then
for any weQ, ({Glw,x)})F*T.

Lemma | lLet S be a compact subset of a Hausdorff locally convex ropo-
logical vector space(r.L.C.T.V.S.); Then for any random continuous ope-
rator T, Qx S—S has a random fixed point.

Theorem 2 Let £ be a T.V.S., XCE.G:QxX—>2% is a Random KKM
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mapping, and for any (w, x)e¢Q x X, G(w, x) is a closed subset, there exists a
subset X (T X such that (1) G(w, x) is compact, X, C. C is a compact convex

A 0

subset of E: Then [} {G(w, x)} 7.

xeX
Theorem 3 Let £ be a T.V.S., XCE, G:Q x X—2%is a random KKM map
ping such that: (1) V(w, x)Qx X, G(w. x) is finite closed; (2) \;weQ, x,e

X, G(w, Xy) is compact; ( 3) for any D= X{|F(F is a finite dimensional subs-

pace of E).()Glw,y) (1D =([G(w, »)(1D. Then [{G(w, )} =0.

v D »e D xe X
In the followings, we use the ecarly results to discuss the random varia-
tional inequality, 1.e, the problem (X, f, ®); E

Let £ be a T.V.S., XCE is a closed subset of £. Random mapping [
Qx X »( -o0, +o2], and f £ +o0; Random operator @;Qx X <X »R,V (w, X, X) ¢
Qx Xx X, P(w, X, x) >0; we want to find a random mapping X; Q » X, such
that; For any (w, ) eQ x X
(x %) f(wy y) + ®(w, X (wy ) > flw, X(0))
Then, we call the (=») is a random variational inequality.

Theorem 4 Let £ be a T,V.S,, the f and &’s definitions the same as prob-
lem (X, f, &), such that,

1. There exists a compact subset KC E, xpe X 'K s,t, For any (w, x) ¢ x
(ANK), floyx) - @lu, x, x5) + fw, Xy)s

2. For each fixed xeX, weQ, f(w, y) + ®(w, x, ¥) is quasi convex on yp;

3. For ecach fixed yed, weQ, f(o,x)-®P(w, x, y) is uniformly continuous
on y; Then, problem (**)(x, f,®) has a random solution, i,e., there exists a
random mapping x: Q > XK.

By using theorem 4, we have

Corollary | For problem (»+), let X be a compact subset, and,

1. For each fixed xe X, weQ, f(w, y) +®(w, x, ¥) 1 quasi-covex on y;

2. For any xeX, yeX, flw,x) - @®{w, x, ¥) is uniformly lower semi conti -
nuous on x;

Then probiem (X, f,®) has a random solution.

Corollary 2 Let £ be a reflexive semi -normed space, s,t.

1). For each xeX, weQ, f(w, V) +dP(w,x,y) Is quasi convex on y;

2. For any ve X, o), f(u, x) -®P(w, x, ¥) is uniformly continuous on x;
I'hen the problem (x. /. @) has a random solution .

Definition Random operator ¢ ; Qx X x X -»R called random monotone if fo.
any (w, x, ) eQ xXx X, we have @(w, x, y) +P(w, v, x) 0.

Befor geting the results of random monotone varational inequality,we need
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lemma 2,

Lemma 2 Let £ be a T.V.S., X be a closed subset of E, f; Qx X—»{ —oo,

+00], f(wyx)# +oo and continuous on x; ®: Qx X x X—R is monotone semi-

continuous on (x, y), such that for any xeX, ®(w, x, x)>0, and for each fixed
xeX, weQ), ®P(w, x, y) is continuous on y; If for each weQ, yeX, flo,y) +
®(w, x, y) is convex on y, Then the following conditions are equivalent:

1) . For each weQ, there exists x,, such that for any y.

f(a)s y)+¢(w’ Xoy y)>f(a)9xm);
2). For each 0eQ, the x,s.t. f(w, y) ~P(0, , x,) > flw, x,), for any yeX,
in particular, if X is compact. In this case,

if there exists a random mapping
X:Q-—>X such

that f(o, y) +®(w, X(0),y) > f(o, X(0)) for any yex, weQ if and
only if f(w,y)-®(w, y, X(©)) > flw, X(0)) for any yeX, wecQ.

Theorem 5 The definitions of X, f, & are the same as theorem 4,
that.

suct

1) . There exists compact subset KC X, and xe€K, s.t. flw, x) >P(w, x,
Xg) + fw, x5) for any xeX\ K, oweQ;

2) . For each weQ, f(w,y)+®P(w, x, y) is convex on yeX;

X €

3). For any weQ, x¢X, f(w, x) -®(w, x, y) is uniformly on x (in particular,
for any 0eQ, yeX, f(o,y), ®(w, x, y) is lower semicontinuous on ye X, respec-
tively);

4) . For each aeQ, ®(w, x, y) is monotone semicontinuous.

Then the problem (X, f, ® has random solution, and the set of all random so-
lution has the property; for any fixed weQ, the mapping image of all random
solution is a compact subset of XK. If ®(w, x, ) is strictly monotone, then
the problem (x, f, @) has a only random wlution,

In fact, corollary 1 is the random minmax inequality of Fan Ky type, here
we write it as the following type.

Theorem § Let Ebe a T.V.S., X is a closed convex compact of E, such
that for any we¢Q, ®(w, x, x) >0,and s.t.

1). For each x,we¢X, f(w, y)+ @(w, x,y) is quasi- convex on y;

2). For any 0eQ, xeX, f(w, x)- ®(w, x, y) is uniformal lower-semiconti-
nuous on x. Then there exists a random mapping: x: Q—=X s.t.: f(w,) +P(a,
X(0), ¥)) > flo, X(0)).

Theorem 7 Let E be a seminormed space, X E is a closed compact of E,
T:Qx X— E is a random continuous operator, Then either (1) or (2) is true:

(1) For any weQ, there exists Xy(w) s.t.T (o, xo(®))=Xo(@);

(2) There exists x¢ X and a continuous seminorm P such that; 0<C P(x -
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T(w, ¥)) =min P(x - T(w, x)), in which; X;;: Q—>X is meosurable.
xeX

Corellary 3 Let E be a seminormed space, XCE is a closed compact sub-
set and T: Q x X— X is random contimious, Then T has a random fixed point,
Remark Cor.3 is the random fixed point of Schauder type.
Definition Let @; Q xX xY —-R, the random mapping Xx;: Q—>X, y: Q—>Y
are called the random saddle-point mapping of @ if for any fixed weQ, such
. that; For any (x, »)eX XY, ®(0, x, 0) <P(w, X(0), y(0)<P(o, X(w), ).
Theorem 8 Let E, F be the T.V.S., XCF, and X, Y are the compact
convex subset of E, F respactively, For each fixed weQ. ®(w, x, y) is conti-
nuous on (x, ¥). Then the (1) is true if and only if the (2) is true.

(1) For each weQ, min max®(w, x, y) =max min®w, x, y)
yeY  xeX xeX yeY

(2) For each weQ, there exists the random saddle-point mapping X, y
such that @®(w, x, J(0)) < P(w, X(0), ¥ (0)) P, X(@), y).

Corollary 4 The E, F, X, Y, ®, the same as the theorem 8, if

(1) For each we¢Q, xe¢eX, d(w, x, y) is continuous and concave on y.

(2) For each weQ, yeX, ®(w, x, y) is continuous and convex on x;
Then there exists random saddle-point mapping x: X—R; J: Y —=R. such that
(0, X(0), YIKP(0, X(0), Y(0)P(0, X, 7(0)).

3 . Quasi-random variational inequality

In this section, we get some results on the quasi-random variational ine-
quality, in this field, some authors have the results, for example [ 7], [ 2],
93, (11], we first have the random fixed point theorem of Browder type.

Theorem 9 Let E be a T,V.,S,, X is a compact convex of E.S. Qx X-»
2% is a continuous set-valued mapping such that 1) or, 2) is true:

1) For each w, x¢X, s(@, x) is a nonempty convex subset of X,and for any
veX, S)'() ={xe¢X, yes(w, x)} is a open subset of X;

2) For each weQ, xe¢X, S(w, x) is a open subset of X, and for any yelX,
S,'(y) is a nonempty closed convex subset of X.

Then S has a random fixed point.

Theorem |Q Let E be a semi-normed space, X is a nonempty compact set
of E; &: Qx X—»2% is nonempty closed convex and upper semi-continuous set-
valued. Then @& has random fixed point,

Definition The quasi-variational inequality is the following problem (Q,
X, Xo,8,9D).

Let E be a semi-normed linear space, X, X, are closed convex subset of
E and X,CX, g:QxXyx X—>(—-o0, +o0] is a random mapping and for any ze
X,, 3xeX, such that g(w, z,x)< +00, and @: Qx X ;X Xx X—+>R is a random
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mapping such that for any zeX,, xeX, ®(o, z, x, x) >0. We want to find a ran-
dom X: Q—X such that. for any yeX,
g(w, X(0), ¥) + 90, X (o), X(a), y) > g(a, X(@), X(@)) . _

Theorem || If the following conditions are true, then the problem(Q, X,
X4 & ®) has a random solution.

(A) X is a compact set and for each o, z¢ X, #(w, z, x, y) is monotone
and continuous on (x, ). ¥(w, z,x, ¥) and g(w, 2, ) is convex on Jy;

(B) For each o, ®(w, z, x, y) is continuous on (x y).

Corollary 5 Let E be a seminormed linear space, XC E is a nonempty
convex subset, J: Qx X x X—+R and for each weQ, the random mapping J(w,x,
y) is continuous and monotone, for any we¢Q, xe¢X, J(w, x,y)' is convexon y
and J(w, x,x) =03 ¥: Qx X—>2%is a nonempty closed continuous set-valued ran-
dom mapping such that.; if x,e ®(w, z,), we have that for any ye®P(w, z,) the
inequality J(w, x4, y) >0 is true. Then we know that: there exists a random
fixed point of @, i.e. ¥(0) eP(w, X(v)), and J(w, X(@),¥) >0, VyeQ(o, X(0)).

In the end, we have )

Corollary § Let E be a semi-normed linear space, X is a compact of E
and its convex. @:Q x X— 2% is nonempty closed continuous, J: Qx X x X—=R
also random continuous and for any we¢Q2, xe¢X, J(w, x, y) is convex on y.For
any 0eQ, xeX, J(w,x,x)=0. Then & has a random fixed point, i.e., for any
weQd, x(w)ed(w, x(w)).
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