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A State-Constrained Minimum-Energy
Optimal Control Problem
for a Steady-State PDE System*

Guanrong Chen**
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Abstract A minimum-energy optimal control problem with inequality-or
smoothing-constraint for a steady-state system described by harmonic partial dif-
ferential equation is studied. Complete and closed-form optimal solutions are
obtained via a spline-based technique developed recently by the author ((1,2)).

It is shown that the optimal solutions have an elegant reproducing kernel struc-
ture.

| . Introduction

The spline approach based on the technique of repioducing kernel Hilbert
space is quite successful in obtaining explicit closed-form solutions for constrai-
ned optimal control problems. In this context, the reader may refer to signifi-
cant results of de Figueiredo (6 ], Weinert, Desai ,and Sidhu (12), and Sidhu
and Weinert (9.10). However, the application of this technique to
the optimal control problems with systems being governed by partial differential
equations does not seem to be available in the literature until the author’s re-
cent paper (Chen (2]), where only the ihterpolation—type constraint is constrde-
red. In this paper,we extend the technique to solve the same problem as that
studied in (2 ) with more complicated constraints, namely. inequality-constraint
and smoothing constraint. We will provide complete solutions to these two prob-
lems with elegant expressions of the optimal solutions.

We remark that this research work was motivated by the significant work of
Li (8], and that further generalizations of the author’s result of (2] under in-
terpolation-type constraints have already been made by the author and his col-
'laborator in (3,5,7). Besides optimal control theory and engineering, some app-
lications of the new technique in signal processing may also be found in 4,53.
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2 . Statement of problems
In this paper, we will consider the following two steady-state state-constrai-
ned minimum -energy optimal control problems ;

Problem |. )
minimize F(), F(u) = 5 {42 Cx, y)dxdy (2.1a)
subject to
Aw,=::‘;’ +‘;;‘§ =u(x,y) (2.1b)
with '
wix, ) [ip=0(x, y) (2.1¢)
and :
a, <w(x,y)<B,, (x,,9) €ED,, i=1,2, e+, n, (2.1d)
where
D,={x,») €R*, x?+ y*<a’< oo}, (2.1e)

dD, is the boﬁndary of D,:9D,={(x,y) €R2=x2+yz=a2}, o(x,y) is a given conti-

nuous function, and {z,}i"_ is ‘a set of given scattered data.

We remark that the s;me 'problem with interpolation constraints, namely: all
inequalities in (2.1d) become equalities,has been thoroughly studied in the au-
thor’s recent paper (2] to which the interested reader is referred for more de-
tails.,

We also remark that this mathematical model has the following simple phy-
sical interpretation: If the function w(x,y) in (2.1b) is the displacement of an
elastic membrane, then the problem is to find a closed-form optimal (i.e., with
a minimum energy F(u*)) distributed load u*(x,y) and the corresponding closed-
form displacement function w*(x, y) such that w*(x, y) satisfies the simply sup-
ported condition (2.1c) on the boundary and the prescribed displacement con -
ditions (2.1d) at n distinct interior points.

Problem 2
k
minimize Fw): F(w) =p 3 (wix,y) -z + =[] u(x,»dxdy (228
u€Ly(D,) i=1 2 W,
subject to
32 02 .
4 ==-éx—“2)-+-d—y”;—=u(x,y) (2.2b)
with ‘
wix, ) |,D‘=¢P(x,y) (2.2¢)

where p €(0,00) is a weight number, {z,}5 , is a set of given scattered data,
and other notations are the same as above.
The physical interpretation of Problem 2 is similar to that of Problem Jl.

— 440—

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



3 . Reformulations of Problems | and 2

Using the technique developed in the author’s paper (2], Problems 1 and 2
can be reformulated ‘as follows: Let w, be the unique solution of the following
Dirichlet problem:

{‘ Aaw=0, (x,y) €D, 3. 1)
w) w,~?,
where the set D, and function ¢ are defined as above. For Problem 1, let w, be
the optimal splution of the following minimization problem:

L. 1
minimize Fy(w) : Fo(w) =§-ﬁna(dw) *dxdy,

wEW,
wiip = 0,
a,l— :vo(x, YD <W(x;, ) <Bi— wo (X, ¥) ,i=1,2, veeyn, (3.2)
Wo={u ELZ(D,,)=u|,D¢= 0},
- where w; is obtained from (3.1). For Problem 2, let w;, be the optimal solution
of the following minimization problem :

wew,

. k '
J/ minimize Fo(w): Fo(w) =p3. (wlx,,y) = (2, - wo(x;, y)))?
iz1

1 - ’
+ 5 [f,, (4w) *dxdy, (3.3)

[ w|op,= 0,
Wo={weL2(Da):w|ip,=0} ,
where again w, is obtained from (3.1). Then it can be easily verified that the
optimal solutions »* and w* of Problems 1 and 2 are both given by

P’wr | PPwt
FPe 2y?

(3.4)

u*=Aw*=

and
wr=wyt+w,, : (3.5)

in which the only difference for the two problems is the -term w » This will be
carried out in the next section. ‘

4 . Optrimal solutions of Problems | and 2

As can be éasily seen from the last section, the key step for solving prob-
lems 1 and 2 is to obtain closed-form solutions w, for both problems and diffe-
rent closed-form solutions w; for two diffefent problems. This can be done as
did in Chen (2] for the interpblation—constrained problem, and the results are
given as follows: First, w, is obtained via the Poisson formula as
az- 72

dr. .
a’-2arcos(6—-1) +r* (4.1

1 2x
wo(x, y) =37-[-f0 [ 1€))

Secondly, it has been proved in Chen (1] that the space W, is a reproducing
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kernel Hilbert space with the kernel K(r) - I~((r,¢9) in polar coordinates given By

r2
K(r)=—871nr, (4.2)
where r=(x*+ y)'’% x=rcosd, y=rsiné, and K(r,0): = K(x, y) with
2 2
a —r

1 2r
K( ) =—| " K(p
*, ¥ 2r fo ( a’-2arcos(@—1) + r?

+ [[,Hx, ps5,G(s, 1 dsds (4.3)
where

1 p2r al-r?

= m—— A 2
Glx, y) 2r o (4K(D) a*-2arcos(8—1) +rt d
and
H(x,}&s,t)=-§lﬂ—{ln((x—s)2+(y~t)2)”2'
_ (s2+1)'"? __a’s 2 __at_ aan
In[ p ((x e Y+ (y i )HYT).

Then, for Problem 1, we have proved in (1] that the optimal solution w*

is given by
n

(A*Hw*=Y c,h(x—x;,y-y), (4. 4)

j=1

where hA(x-x;,y~ y;) are point-evaluation functionals, or equivalently,
» - =
wt= Wo+}:1 c;(K(x=x;,y=y) - K(x—x;,y~y») ],

where the constants {c,};‘=l are determined by the following quadratic program-
ming:

io 1 2
rx(]:lr,nz J'J'D‘(Aw‘) , (4.6)

subject to
n

a;~ w0(x19yl)<zlcj[K(xl_ Xps i~ ¥y
e

- E(x,— Xy, Yi— Yy IKB - wolx,, p)
i=1,2, **,n.
For Problem 2, we need to solve the following problem in order to find the
optimal solution w;:

k ~
[ Azw,'=2l/4,(K(x—x,,y—y,)—K(x—x, , =)

i=
1 wPloo= 0 4.7)
M =0Cz = wolxy,y) = Wi K(x= X, y=y) — K(x=x,,y=y) wp) ,
where (=1, e,k

fs8owy: = _;—HD‘,(AD (4g)dxdy,
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and other notations are the same as before. the proof of this resuli can be found
in Chen (1]3.
Finally, we remark that Problems 1 and 2 may incorporate one more bound

dary constraint of the form:

Iw(x, y)
on
which is to be added to either (2.1¢) or (2.2¢), where n is the outer normal

and ¥(x,y) is a given continuous function. In this case, all conclusions hold ex-

lap,=¥(x, 5, (4.8)

cept w, is now the unique solution of the following:
A’w=0, (x,y) €D,

d
W|;Da:¢, d;: |iq':¢,

and is given via a Poisson-like formula (cf. Tikhonov and Samarski (11]) by

S | 2_ 2,41 p2r -y
wo (x, ») 27ra(r a? {2f° a’-2arcos(0—1) +r?
2z @(t) (a—rcos(@— 1)) )
0 (a?-2arcos(8—1) +rt)? ’
The reader is referred to Chen (1,2) for more details for this discussion.

+
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