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Throughout this note S will be an ordered semi-group with identity and R
a commutative ring. RS the semi group ring of S over R, 4 ring R is said
to be a reduced ring if R has no nonzero nilpotent elements, We say a semi-
group S(=*1) is ordered if it admits a linear ordering <, such that g<h imp-
lies gk< hk, kg<kh for all k in S (refer [ 17).

We prove the following lemma to prove our main theorem .

Lemma | Let R be a reduced ring and S(#1) be an ordered semi group
then the semi-group ring RS is a reduced ring,

Proof To show x"=0 is not possible for any x#0 in RS, n a positive integer.
Let xz}n_'_x‘.s,._ Given S is an ordered semi-group hence let s,<s2'<s3<---<s,,,

i=}

Consider x"= is,"s,"+(terms as products of s;s5;s taken n at a time). Given x+#
0 for i=1,2,--i-=,1m and we have s/ to be the largest element in the product so
x"#0.Hence RS is a reduced ring.

The following example throws some light on the converse part of the abo-
ve lemma which cannot be true if S is not ordered.
‘Example Let R be a commutative ring with identity. Let R be a reduced ring
and S a semi-group commutative but non cancellative in which
(1) s°=¢ for every s and 7 in S.
(2) st=st? for every s and ¢ in S.
Then the semi-group ring RS is not a reduced ring. For take x=s5-¢ then x°
=5’ - 35t +3st°— 13, thus x*=9,
So RS is not a reduced ring. Hence we impose the condition on S to be
ordered,
Theorem 2 Let S be an ordred semi-group. The semi-group ring RS is a
reduced ring if and only if R is a reduced ring. ( to: 493)
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G,UG, in (R,
. (o)'; (b+9,)- H=0 on Nch(D")
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Proof If RS is a reduced ring then RCRS is a reduced ring.

Clearly if R is a reduced ring and S is an ordered semigroup by lemma
1 RS is a reduced ring.

Here it is interesting to note if we relax the condition that S need not
be ordered then by above example we cannot always assert that RS to be a
reduced ring. '

But we pose the following problem.

Problem Can Theorem 2 be true for semi-groups which cannot be ordered?
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