Semi-Group Rings of Ordered Semi-Groups Which Are Reduced-Rings

W. B. Vasantha

(Dept. Math. Indian Institute of Technology, Madras-600 036, India)

Throughout this note S will be an ordered semi-group with identity and R a commutative ring. RS the semi group ring of S over R. A ring R is said to be a reduced ring if R has no nonzero nilpotent elements. We say a semi-group $S(\neq 1)$ is ordered if it admits a linear ordering <, such that g < h implies gk < hk, kg < kh for all k in S (refer [1]).

We prove the following lemma to prove our main theorem.

Lemma | Let R be a reduced ring and $S(\neq 1)$ be an ordered semi group then the semi-group ring RS is a reduced ring.

Proof To show $x^n = 0$ is not possible for any $x \neq 0$ in RS, n a positive integer.

Let $x = \sum_{i=1}^{n} x_i s_i$. Given S is an ordered semi-group hence let $s_1 < s_2 < s_3 < \dots < s_n$, Consider $x^n = \sum_{i=1}^{n} s_i^n s_i^n + \text{(terms as products of } s_i s_j' \text{s taken } n \text{ at a time)}$. Given $x_i^n \neq 0$ for $i = 1, 2, \dots, m$ and we have s_i^n to be the largest element in the product so $x^n \neq 0$. Hence RS is a reduced ring.

The following example throws some light on the converse part of the above lemma which cannot be true if S is not ordered.

Example Let R be a commutative ring with identity. Let R be a reduced ring and S a semi-group commutative but non cancellative in which

- (1) $s^3 = t^3$ for every s and t in S.
- (2) $s^2t = st^2$ for every s and t in S.

Then the semi-group ring RS is not a reduced ring. For take x = s - t then $x^3 = s^3 - 3s^2t + 3st^2 - t^3$, thus $x^3 = 0$.

So RS is not a reduced ring. Hence we impose the condition on S to be ordered.

Theorem 2 Let S be an ordred semi-group. The semi-group ring RS is a reduced ring if and only if R is a reduced ring. (to: 493)

^{*} Received Nov. 22, 1988.

$$\widetilde{G}_2 \cup \widetilde{G}_2$$
 in (R_3)

 $(b \cdot v_1) \cdot H \ge 0$ on $N \operatorname{ch}(D')$

References

- [1] A. V. Bitsadze and M. A. Lavrentjev, Dokl. Akad. Nank S. S. S. R. 70, 1950, 373-376.
- [2] F. I. Frankl, Bull. de l'Acad. des Sciences de l'U. R. S. S., 9.2, 1945, 121-143.
- [3] S. Gellerrstedt, Thesis. Uppsala. 1935; Ibuch Fortschritte Math. 61, 1259.
- [4] M. E. Protter, J. Rat. Mach. and Anal., 2, No.1, 1953, 107—114.
- [5] J. M. Rassias, Bull. Inst. Math. Acad. Sinica. 12, 1983, 51-55.
- [6] —, Thubner-Texte zur Mathematik, Leipzig, 79, 1985, 269—284.
- [7] ----, Como. Rend. Acad. Bulg. Sci. 38, 1985, 31-34.
- [8] ----, Teubner-Texte zur Mathematik. Leipzig, 90. 1986.
- [9] ----, J. Math. Res. and Expos., 1, 1987, 79-80.
- [10] ----, Ccmp. Rend. Acad. Bulg. Sci., 41, 1988, 35-37.
- [11] ——. Lecture Note Series. Instituto de Ciencias Matematicas de Sao Carlos. Universidede de Sao Paulo. Brasil. 1988.
- [12] F. G. Tricomi, Atti Accad. Naz. dei Lincei, 14, 1923, 133-247.

from: 494

Proof If RS is a reduced ring then $R \subseteq RS$ is a reduced ring.

Clearly if R is a reduced ring and S is an ordered semigroup by lemma 1 RS is a reduced ring.

Here it is interesting to note if we relax the condition that S need not be ordered then by above example we cannot always assert that RS to be a reduced ring.

But we pose the following problem.

Problem Can Theorem 2 be true for semi-groups which cannot be ordered?

Reference

[1] Passman, D. S., Infinite group rings. Pure and Applied Mathematics, a series of monographs and text books. Vol.6, M. Dekker (1971).