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Abstract

In this paper, by means of a kind of strongly isomorphic cutting-branch tech-
nique, an algorithm for the problem of finding the minimal number-grouped par-
titions of random permutations is given, and the open problem in [ | ] is solved.

| . Introduction

The studies on the problem of minimal number-grouped partitions of random
permutations started around the center of 1960’s. In 1978, it was announced by
a group of mathematicians in Academia Sinica as an open problem in [1]. For
some special cases of this problem, recently, Yongjin Zhu and Ruopeng Zhu ob-
tained an efficient algorithm under the condition of quasi-orderedness [2], and
Kequan Dingsolved the problem with the pseudo-ordered condition [3]. In par-
ticular, the study on the basic subroutine, the scheme-moving-down algorithm,
shows that a generalization of this algorithm can be applied to solve the problem
of minimal conforming partitions of .any labelled finite posets (see[4]). On the
other hand, the original problem of minimal number-grouped partitions of ran-
dom permutations seems very difficult. In 1986, on the China- USA International
Conference of Graph Theory (Jinan), Guozhi Xu, Qinghua Chen and Jiyong Liu
proposed a conjecture that this problem is NP-complete, Because of this, they
studied the approximation solutions of this problem. For the accurate solution pro-
blem, Jiyong Liu gave an algorithm based on the dynamic programming method,
before, But, the computational complexity of that algorithm is extrerhely high,
which is the factorial of the length of sequences. Hence, Qinghua Chen pointed
out that, on the conference, this algorithm is not useful, practically.

In this paper, we study the accurate solution problem. By means of introdu-
cing a kind of strongly isomorphic cutting-branch technique, we get an algorithm
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for the problem with time complexity O(mn2"), where n is the number of di-
fferent digits in the sequences. According to the engineering background of our
problem, n is usually less than or equal to 10 and the length m of a sequence
is less than or equal to 70. Therefore, the algorithm given here is applicable,
and the open problem in [1] is solved.

Without special statement, we shall use the definitions and symbols as in
[2,3] in our discussion,

2 . N-Generating Tree

In this section, the concept of n-generating tree is introduced and its pro-
perties are studied, which will be used in the rest part of our discussion,

Definition 2. | (n-generating tree) Let T, be a rooted tree of height n. If it
satisfies the following condition that

| ()| =n-r(v), VveV(T,),

then T, is called an n-generating tree. Usually, we denote its root as s,.

By definition, it is easy to see that the n-generating tree has the following
" properties, ’
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i) Let T, (») be a subtree of T,, whose root is », then T, (») is an (n-r(»))
- generating tree.

Definition 2.2 ((m, n) permutation) Let r:a,,a,,+,a, be a repeatable per-
mutation which is arranged at random with n numbers, say, 1,2, e, n. Without
loss of generality, the discussion is confined to such a case that each number
in the set {1,2,++ n} must appear in 7 at least once. Denote 7(i): =a,, 1<i<m.
Suppose that there are two subsequences of r, say, ' and 7’, Which satisfy
that for any given natural number k (1<k<n), the frequency of k appearedin

17’ i1s equal to that in n”; then n’ is called to have the same content as that of

r”.

Theorem 2.3 Let 7, be an n-generating tree with its root z,, There exists
a labelling function ¢ defined on V(T,) such that the set of all labelling sequ-
ences on the n-paths of T, coincides with the set S(n) of all (n, n) random per-
mutations,
Proof Let S,.(n‘):z{n(S(n)|7z(1) =i}, 1<i<n, Clearly, the family {S,{n)},
1<i<n, forms a partition of S(nm),i.e.,
S(mNS,(m=0, i+j;

and

| Si(m) =S(n).
i=]
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Thus, by the property ii) of T, and the principle of mathematical induction,
the proof is completed.

Definition 2.4 Let (T, ¢) be a labelled n-generating tree, where ¢ is a label-
ling function defined on V(T). Let v,,0,e¥V(T), and T()),T(»,) be two subtrees
of T, with their roots s and #,, respectively. If there exists a bijection ¢
from V(T (y)) to V(T(s,)), such that

i) VU,0«V(T(v)), the necessary and sufficient condition that (¢v/,v") e E(T(2,))
is (£(),4(V)) e E(T(,)).

ii) @) =@({(¢)) holds true for any JeV(T(2))\{z,}.
then T(z) is said to be strongly isomorphic to T(z), and is denoted as T(p,)=
T(v,)).

It is evident that th‘e strongly isomorphic relation is an equivalent relation
on the set of subtrees of (7T, ¢). By the definition, it is easy to show the follo-
wing simple, but very useful facts,

Lemma 2.5 Let T, be an n-generating tree., For any o, v,¢V(T,) the neces-
say and sufficient condition for T,(»,)=T,(s,) is the labelling sequence on Py, has
the same content as that of Py, .

Corollary 2.6 Let T, be the same as above. For any »eV(T,), there are (r()1)
subtrees on T, that are strongly isomorphic to T, (2).

Lemma 2.7 Let T, be the same as above. For any 4 v/¢V(T)), there are
(r(¢) - (v))! subtrees on T, that are strongly isomorphic to T(#/), with the con-
vention that

(-a)! =0, for- a>0.

Lemma 2.8 Let 7,6 be the same as above. For any given natural number 4,
classify the members in V(T,), the necessary and sufficient condition for that ¢/
and ¢ are in the same class is 'Tn(v’)gT,,(zl’). Denote the family of all these

classes as {V,,i}ﬁ:l, then

3. The Strongly Isomorphic Cutting- Branch Strategy and The Algorithm

By the optimal property theorém of the scheme-moving-down algorithm in
[ 23, so far as a random permutation is concerned, if {S,}Llis a minimal num-
ber-grouped partition of =z, denote

. 1/t= 808,008, ,

then ¢: =|Px,(1t)|, where P, (7) is the scheme- moving-down partition of » accor-
ding to z’. Hence, the problem of finding a minimal number-grouped partition
of a random permutation can be divided into two speps.

First, find the scheme-moving-down partition of 7 according to each member
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in G(z). Then, among all these partitions, find one of them which is formed
with fewest parts, It is clear that such a method is not valuable for its time
complexity is too high to use, O(m*(ny)). But, the method gives us a heuristic
clue for formulating our algorithm. Using the strongly isomorphic cutting- branch
strategy, we are successful in making an implicit enumeration which is fit for
the purpose of reducing the time complexity. The key point of this strategy is
to make comparisons among the paths ended at points which are of the same
rank and their adjacent subtrees are strongly isomorphic with each other.

From the discussion in section 2, one can see that two paths on T ,say, Py,
and Pp,, are comparable, iff

T (0))=T,(0,) .
Thus, the minimal number- grouped partitions of random permutations can be
obtained with the following algorithm (without running the risk of causing con-
fusion, we identify a number- group sequence and its condensed sequence, and
do not distinguish a path Pvin T, with its labelling sequence),

Algorithm G

Let 7 be an (m, n) random permutation, and T, be an n-generating tree.

1 ie1, j«1, T<T,;

2) i=n+17 If so, stop. Otherwise, j<1;

3) Vit =V \{out cue jo1 }

4) V=7 If so, i<i+]1, j<«1, turn to 2);

5) VeV, v« 0v; let

Cy: = {VVeV(TH|T(¥)=T(g)}s

6) find v,;¢C,, such that Py, >Pv', vveC,;

7) cut off the adjacent branch of »’, for any veC,\{z,;}, and get a new
tree T ‘ .

8) T<T', j<j+1, turn to 2);

4 . The Basic Lemma

In this section, we prove the following basic lemma which was first announ-
ced, without proof, in [ 5].

Lemma 4.} Let 7 be an arbitrary (m, n) random permutation, then a mini-
mal number-grouped partition of r can be found with Algorithm G, The time
complexity of the algorithm is O(m*n2"%).

Let V,.'(T) be a subset of V,(T), which is formed with the points left after
the performance of the algorithm in V,(T)., Then, no pair of potnts in V,'(T)
have their adjacent subtrees strongly isomorphic to each other. Meanwhile, any
subtree of T, must be strongly isomorphic to one ’of the subtrees whose root lies

n

in ¥;XT). Note that any pair of subtrees of T, whose root lie in V,(T,) must be
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strongly isomorphic to each other. Hence, the performance of the algorithm leads
to a single n-path of T,. By the comparison-in- part criteria in { 3], we know
that thc scheme-moving-down partition of 7 according to the n-path left is a
minimal number-grouped partition of r. Furthermore, the above discussion and
the conclusion of Lemma 2,8 imply that after the cutting- branch processes in all

members of {V(T)) there are

I<i<k-1?
n n
ck—-l: (k“l

points left in V,_,(T), exactly. Note that for each pair of these points,their ad-
jacent subtrees are not strongly isomorpnic. Then, they have (n+ k+1)C,'('_1 sons
in V,(T), totally, Classify these son- points according to the contents of their cor-
responding k- paths, i.e., all those whose corresponding k- paths have the same
content are in a same class, otherwise,; they belong to different classes.It is easy
to see that each of the classes has & members. Thus, the cutting- branch ope-
ration in V,(T) can be realized by (k-1) times of comparisons in each of the
class, On the set V,(T), we need to compare
(((k=D)(n—k+10/k)C{_,

times. Through simple combinatorial calculation, we find that the performance
of the Algorithm G can be fulfilled with

i (k—1)(n—k+1) c"

a=(n=2)2"1+1
ey . k k-1

times of comparisons among paths., As each comparison can be realized by the
scheme- moving-down algorithm which can be carried out in m(m+ 1)/2 times of
comparisons, hence, the time complexity of Algorithm G is O(m’n2" %), and the
proof is completed,

5§ . Decomposibility of Li’s Algorithm

It is easy to see that Li’s algorithm is the basic subroutine of our optimiza-
tion process, Generally, the computation time of the algorithm is O(m?Y .Because
of this, as a subroutine, it is rather slow. But, the studies on the structure of
the algorithm show that it is decomposible. And this property enables us to re-
duce the computational time of Algorithm G.

Theorem §.| (decomposibility of Li's algorithm) Let r and »” be (m, n)
random permutations with the same content, r1=7"(1)7'(2)+1(m-1).Denote the
term of 7 corresponding to z’(j), in the process of execution of Li’s algorithm
on n according to 7', as #(i;), 1<i<m. Let {'7/'}1<j<k be the scheme - moving -
down partition of r according to z1. Then, the last term of #, is 7(i, ,) and the
scheme-moving-down partition of 7 according to z’ is as follows:

{nj}KKk_lU{'lkon(i,,)}, if i, ,<in,
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Proof It follows from the definition of Li’s algorithm, directly.

Let 7 be a given random permutation, 7’ and z” two random permutations of
length & and ’

=2/ (D)n/(2)sen’(k—1) =a"(1)x"(2) sex(k = 1) .

In order to compare the scheme-moving-down partitions of r according to
7’ and 7”, respectively, by the theorem above, we need only to execute the fol-
lowing algorithm, in stead of Li’s,

Algorithm G

a) find the scheme-moving-down partition of r according to =1, say {'71)1<j<h

b) according to the rule of Li’s algorithm, find the corresponding term
7(iy) of n'(k) in x.

¢) according to the rule of Li’s algorithm, find the corresponding term
7( J,) of z%(k) in 7,

d) by the methed mentioned in Theorem 5.1, find the scheme-moving-down

partition of 7 according to 7’ and »” from the partition { .And, we define

”ﬂ1<j<h
that »’<x” iff the number of parts in the scheme-moving-down partition of =
according to z’ is less than that according to 7”, or these two numbers are equal
and i, <j,.

Obviously, the execution of b) and ¢) needs 2(m- 4k +1) times of comparisons;
i.e., O(m) times of comparisons, and the execution of d) needs O(1) times of
comparisons,

For example, 7 =3213221, =’ =11223, 7”=11222. Thus, the scheme-moving-

down partitions of z according to 71,7’ and n”, respectively, are as follows;

1 1 1 1 1 1
2 2 2 2 2 2 2
3

Clearly, we have 7"<z’. ,

Note that in the execution of Algorithm G, whenever we compare two bran-
ches of the tree, the only difference between them may occur at the last posi-
tion, Hence, we can use the scheme-moving- down partition of r according to
the common part of the two branches, which is obtained in the previous loop of
Algorithm G ,and then, execute b), ¢) and d) of Algorithm C .In this way,a com-
parison between two branches needs only O(m) times comparisons of keys. This
proves the main result of the paper,

Theorem 5.2 A minimal number-grouped partition of any (m, n) random
permutation can be obtained by Algorithm G, with its time complexity O(mn2").

Similar arguments Jead to an improved form of the main result in[ 3].

— 506 —



Theorem 5.3 Let 7 be any (n,n) random permutation. A minimal pseudo-
ordered partition o‘f 7 can be obtained by an effcient algorithm, with its time
complexity O(n’).

6 . Conclusion

In the theoretical opoinion, Aléorithm G is exponential. Thus, when n inc-
reases, the computation time of the algorithm will increase, rapidly, But, for
the cars marshalling practice, in the railway system of China, generally, what
we need to do is to find the minimal number-grouped partitions of random per-
mutations for the case that n<10. Therefore, the algorithm seems applicable in
_practice. Again, note that in the process of the algorithm, the only factor which
has some thing to do with the number m is the subroutine of the decomposed
scheme-moving-down algorithm, Algorithm C. This shows that the time comp-
lexity of the algorithm is stable with respect to m, for any -given n.

In addtion, in the practical computation, it is not necessary to keep all the
previous scheme-moving-down partitions in the memory unit of a computer, He-
re, we need only to keep their numbers of parts and the address of the last term
of their last part in r. After executing the Algorithm G, we get the optimal stan-
dard sequence. Then, we can find the scheme-moving-down partition of 7 accor-
ding to this standard sequence, by Li's alggrithm. Therefore, the reduction or
time complexity, by the decamposibility of Li’s algorithm, is essential which does

not cost more space resources than before.
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Some Finite- Dimensional Involutive Systems
with Polynomial Forms
Ma Wenxiu

(Institute of Mathematics, Fudan Universiy)

Abstract

In this paper, starting from the combination of two in volutive systems, we
consider separately some systems of polynomial functions; {I‘Y =B + Rm}:’”":0 R

(1D =B +8 3= {1 =B, +T,> and so on; and analyse carefully the sufff

m=0° =0
cient and necessary conditions of the involution of three systems of func-
tions {1,‘:,”}:;0 (1<<i<3) with general coefficients.Furthermore,we present concrete
forms of the involutive systems hidden i?{(;”};’;o (1<<i<{3);and thus obtain six
kinds of nontrivial involutive systems of functions, which include a few
involutive systems discussed inthe iiterature.Based upon these involutive systems,
we can generate a lot of new finite-dimensional Hamiltonian systems which are

completely integrable in the sense of Liouville,
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