Journal of Mathematical Research and Exposition Vol. 10, No.4, Nov., 1990

Fixed Point Theorems for Contraction Mapping on Probabilistic Metric Spaces*

Cai Changlin

(Department of Mathematics, Sichuan University)

Let R denote the reals, (E, F, Δ) be a Menger space. For any pair $p, q \in E$, $t \in R$, F(p, q, t) is a distribution function on R.

A function $\phi(t): R_+ \to R_+$ is said to satisfy the condition (ϕ) , if $\phi(0) = 0$ and $\lim_{n \to \infty} \phi^n(t) = \infty$, $\forall t > 0$, where $\phi^n(t)$ is a *n*-th iteration of $\phi(t)$.

Throughout of this paper, we always assume that (E, F, Δ) is a complete Menger space, Δ is a continuous t-norm, $\phi(t)$ is a function satisfying the condition (ϕ) .

Theorem | Let T be a continuous self-mapping on (E, F, Δ) , A is a subset of E, $B = \bigcup_{n=0}^{\infty} A_n$, $B_n = \bigcup_{j=n}^{\infty} A_j$, $A_n = T^n A$, $n = 0, 1, 2, \cdots$ If B is probabilistically bounded and for any B_m , there is a positive integer $m(B_m)$, $m = 0, 1, 2, \cdots$ such that $\inf_{p, q \in T^{m(B_m)}} F(p, q, t) \geqslant \inf_{p, q \in B_m} F(p, q, \phi(t))$

Then T has a unique fixed point $p^* \in E$ such that for any $p_n \in T^n A$, $P_n \rightarrow p^*$. Corollary 1 Let T be a continuous self-mapping on (E, FA), B_n , B as same as those in theorem 1. If B is probabilistically bounded, and there is a positive integer m such that for all n > 0.

$$\inf_{p, q \in T^{m}B_{n}} F(p, q, t) > \inf_{p, q \in B_{n}} F(p, q, \phi(t))$$

Then the conclusion of theorem 1 still holds.

Corollary 2 Let (E, F, Δ) be a complete Menger space, Δ a t-norm satisfuing the condition $\Delta(t, t) > t$, $t \in [0, 1]$. Suppose that $T: E \to E$ is a contraction mapping, i.e. there is a constent $k \in (0, 1)$ such that

$$F(T_p, T_q, t) > F(p, q, \frac{t}{k})$$
 $\forall t > 0, p, q \in E$

Then T has a unique fixed point $p^* \in E$, and for each $p_0 \in E$, the sequence $\{p_n = T^n p_0\}$ converges to p^* .

Theorem 2 Let T be a continuous self-mapping on (E, F, Δ) , sets B_m , A_n

^{*} Received May. 11, 1987.

as same as those in theorem 1, B probabilistically bounded. For any A_j , B_k , j, $k = 0, 1, 2, \cdots$ there exist positive integers $n(A_j)$, $m(B_k)$ such that

$$\inf_{\substack{p \in T^{n(A_j)} A_j \\ q \in T^{m(B_k)} B_k}} F(p, q, t) > \inf_{\substack{p \in A \\ j \in A_j \\ j \in A_j \\ j \in A_j}} F(p, q, \phi(t))$$

$$(4)$$

Then the conclusion of theorem 1 still holds.

Theorem 3 Let T be a continuous self-mapping on (E, F, Δ) , sets B_m , A_n as same as those in theorem 1. If B is probabilistically bounded, and for any A_n , there is a positive integer $m(A_n)$ such that

$$\inf_{\substack{p \in T^{m(A_n)} A_n \\ q \in T^{m(A_n)} B_m}} F(p, q, t) > \inf_{\substack{p \in A_n \\ q \in B_m \cup T^{m(A_n)} A_n}} F(p, q, \phi(t))$$

Then the conclusion of theorem 1 still holds.

Corollary 3 Let T be a self-mapping on (E, F, Δ) , suppose that for each $x \in E$, the sequence $\{T^n x = x_n\}$ is probabilistically bounded, and for each $x \in E$, there exists a integer m(x) > 1 such that for all $y \in E$, t > 0.

$$F(T^{m(x)}x, T^{m(x)}y, t) > \min\{F(x, y, \frac{t}{k}), F(x, T^{m(x)}y, \frac{t}{k}), F(x, T^{m(x)}x, \frac{t}{k})\}$$

where k is a constent with $k \in (0,1)$. Then T has a unique fixed point x^* and $T^n x \rightarrow x^*$ for each $x \in E$.

References

- [1] Chang Shisheng, Scietia Sinica (A), 11(1983), 1144—1155.
- [2] Sehger V. M. & Bharncha-Reid A.T., Math, Systems Theorg, 6 (1972)2, 92-102.

概率度量空间中压缩映象的不动点定理

蔡 长 林 (四川大学数学系)

本文通过引入压缩映象集序列的概念,推广并综合了张石生 $^{[1]}$ 以及 V. M. Sehger 和 A. T. Bharucha-Reid $^{[2]}$ 中某些主要定理的结果。