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Some Characterization of Semi- Fredholm Operators*:

Du - Hongke

(Dept. Math, Shanxi Normal University, Xi’an)

Let B(H) be the set of all linear bounded operators on a Hilbert space H.
For A¢B(H), let R(A) and N(A) denote the range and null space of A, res-
pectively, A is said to be semi-Fredholm if R(A4) is closed and dim N(A)<‘50 or
dimN(A4")< oo, where dimN denotes the dimension of subspace N, 4" is ‘the
abjoint of A4. Define the minimum modulus of A by

r( 4) = inf{]| Ax|: dist (x, N(A)=1}.
It is well known that r(4)>0 if and only if R(A4) is closed. ‘

' In the present note we shall study some characterization of semi- Fredholm
operators. It is itself interesting and useful to use for perturba’tions of generali--
zed inverse. We obtain main results as following.

Theorem | For Ae¢eB(H), A is semi- Fredholm if and only if one of the
following statements holds. ' '

(1) ‘There is a positive number J>0 such that R(E) is closed " for each

E¢B(H) with |4~ E|<4. ‘ '

(2) For every compact operator Ke¢B(H), R(A+ K) is closed. )

Theorem 2 If A¢B(H), A is semi-Fredholm if.ahd only if- there is a ball

B(A, ¢) C BCH) with center 4 and radius ¢ such that /10~{1 A=min{dim N(E) ,
dim N(E®), Ee¢B(A, a)} is bounded.

. Proof of Theorems

Proof of Theorem { (1) Denote the set of all semi- Fredholm operators in
B(H) by q)y. It is well known that the set @# is an open set in B(H). Hence
there is a positive number 6( 4)>0 for each 4, such that E with | 4~ E||<6 is |
semi- Fredholm too. Of course, R(E) is closed.
Conversely, for an operator Ae¢BCH) if ‘A is not semi-Fredholm and R(A) is
' not closed then we have nothing to prove. If R(A) is closed, we shall pomt ‘
_out that’ for any 6>>0 there is an operator B with |4~ B|<4 such that R( B is
‘not closed. In this case, 'since A is not semi- Fredholm, we have dimN(A4) =
N dxm N(A "= 00 Suppose that {e,.},.:1 is an orthonormal basis of N(A4) and {f}~

i=1
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. is an orthonormal basis of N(A®) define an operator K by
Ke,=(1/i)f,-v‘,4
Kx=0, xe(Vle) )"
where {V{e,}zl}l is the orthogonal complement of V{e,.}zl. We first show that

R(K) is not'close'd. In fact, it is easy to know that y,,"= S (1/i) fieR(K), but

. . . i=0 .
limy,= S (1/i) f, &R(K). Put A,= A- (1/2)JK. In this case, it is clear that
L i=1 )

R(A45)= R(A) DR(K), hence R(A,) is not closed. Observe that |A- 4,(<J,
then A; is as desired. ’ o7

(2) Observe that the set ¢ g is invariant under compact perturbation,
for any compact operator K, R(A+ K) is closed.

On the other hand, if R(A) is not closed, we are done. If A4 is not semi-
Fredholm and R(A) is closed. We can use the operator K as defined in the proof
of (1). It is easy to see that K is compact, but R(A+ K) is not closed., This
completes the proof. ! . '

Proof of Theorem 2 = From Proposition Xl 3,20 (a) in [1], it is evident
that A,= min{dimN(A4), dimN(A4"}.

.%&” Assume that for an operator A there is a ball B(A, &) CB(H) and a
constant M such that min{dim N(B), dim N(B*) < M for each Be¢B(A, ¢).

To prove that A is semi- Fredholm it is enough to prove that R(A) is closed.
Let A=UP be the standard polar decomposition of A, assume by way of con-
tradiction that R(A) is not closed, then it is easy to know that 0 is an accu-
mulation point of o(P). If P=[AdE, is the spectral decomposition of P,then for .

£>0,dim(E([0,&]))= oo, Put P,=fooldE‘,and denote A,= UP,, it is clear that
|4~ 4] = U [aaE]<e,

‘and dim N(4,) =dim(E([0, ¢]) H) = oo, This contradicts the assumption.The proof
is finished., '
Here it is valuable to point out that boundeness of dimeﬁsion of compact
perturbation for semi-Fredholm does not hold. .
Next we shall give a result about an operator with closed range.
Proposition 3 Let A¢B(H) be an operator with closed range then for each
operator B with | A- B|<r(A),
(1) dimR(B)>dimR(A);
(2) dimN(B)<dimN(A) . '
Proof (1) If dimR(B)=o, we are done. Assume that dimR(B)=n< oo, By
the way of contradiction, if dim R(B)<-dimR(A) and note dim R( 4) = dim R(4™),



we can choose an orthonomal set {e, ,e;, =, e,,€,., ) of R(A"}. In this case, {Be,};’:l1

is linearly dependent, thé}efore there are complex numbers 4;,, i=1,2, e, n+1 ,

n+ 1 ) .
which are not all equal to zero and satisfy _4,Be,=0. Of course, we can choose 4,

n+1l .
such that | 3"4e,) =1. In this case,
i=1
n+1 n+1
| A= B >] (4~ B) (T he) | = fACT e [=r( A,
i=1 4 i=1

it is a contradiction, _

(2) If dimN(A) = oo, we are done. .Next we assume that dimN(A) = n< oo,
By way of contradiction, if dimN(B)>dimN(A), then there is an orthonormal
set { fi, fiyo s fos o JCN(B) . If {e/,e,,°+,e,} is an orthonormal basis of N(A4),

- then the following system- of equations

n+l .

1A i,e;) =0, j=1,2,5,n ,

. i=1 l n+l

has a nonzero solution, this shows that there is a nonzero vector ) 4,f, which
i=1

n+1
is orthognal to N(A). Choosing 1, such that |3 4 f|=1, we have
i=1
n+l n+i
|A-B|=| (A= B) CTA0 | =|ACCALH | = r(
i=1 i=1 .
a contradiction, the proof is finished.
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