Some Characterization of Semi-Fredholm Operators*

Du Hongke

(Dept. Math, Shanxi Normal University, Xi'an)

Let B(H) be the set of all linear bounded operators on a Hilbert space H. For $A \in B(H)$, let R(A) and N(A) denote the range and null space of A, respectively. A is said to be semi-Fredholm if R(A) is closed and $\dim N(A) < \infty$ or $\dim N(A^*) < \infty$, where $\dim N$ denotes the dimension of subspace N, A^* is the abjoint of A. Define the minimum modulus of A by

$$r(A) = \inf\{||Ax|| : \text{dist } (x, N(A)) = 1\}.$$

It is well known that r(A) > 0 if and only if R(A) is closed.

In the present note we shall study some characterization of semi-Fredholm operators. It is itself interesting and useful to use for perturbations of generalized inverse. We obtain main results as following.

Theorem | For $A \in B(H)$, A is semi-Fredholm if and only if one of the following statements holds.

- (1) There is a positive number $\delta > 0$ such that R(E) is closed for each $E \in B(H)$ with $||A E|| < \delta$.
 - (2) For every compact operator $K \in B(H)$, R(A+K) is closed.

Theorem 2 If $A \in B(H)$, A is semi-Fredholm if and only if there is a ball $B(A, \varepsilon) \subset B(H)$ with center A and radius ε such that $\lambda_0 = \{\lambda: \lambda = \min\{\dim N(E), \dim N(E^*)\}, E \in B(A, \varepsilon)\}$ is bounded.

Proof of Theorems

Proof of Theorem (1) Denote the set of all semi-Fredholm operators in B(H) by $\varphi_{\mathcal{F}}$. It is well known that the set $\varphi_{\mathcal{F}}$ is an open set in B(H). Hence there is a positive number $\delta(A) > 0$ for each A, such that E with $||A - E|| < \delta$ is semi-Fredholm too. Of course, R(E) is closed.

Conversely, for an operator $A \in B(H)$ if A is not semi-Fredholm and R(A) is not closed, then we have nothing to prove. If R(A) is closed, we shall point out that for any $\delta > 0$ there is an operator B with $||A - B|| < \delta$ such that R(B) is not closed. In this case, since A is not semi-Fredholm, we have $\dim N(A) = \dim N(A^*) = \infty$. Suppose that $\{e_i\}_{i=1}^{\infty}$ is an orthonormal basis of N(A) and $\{f_i\}_{i=1}^{\infty}$.

is an orthonormal basis of $N(A^*)$ define an operator K by

$$\begin{cases} Ke_i = (1/i)f_i, \\ Kx = 0, \quad x \in \{V\{e_i\}_{i=1}^{\infty}\}^{\perp} \end{cases}$$

 $\left\{\begin{array}{l} Ke_i=(1/i)f_i \ , \\ Kx=0 \ , \quad x\in \{V\{e_i\}_{i=1}^{\infty}\}^{\perp} \ , \end{array}\right.$ where $\{V\{e_i\}_{i=1}^{\infty}\}^{\perp}$ is the orthogonal complement of $V\{e_i\}_{i=1}^{\infty}$. We first show that R(K) is not closed. In fact, it is easy to know that $y_n = \sum_{i=0}^{n} (1/i) f_i \in R(K)$, but $\lim_{n\to\infty} y_n = \sum_{i=1}^{\infty} (1/i) f_i \in R(K)$. Put $A_{\delta} = A - (1/2) \delta K$. In this case, it is clear that $R(A_{\delta}) = R(A) \oplus R(K)$, hence $R(A_{\delta})$ is not closed. Observe that $||A - A_{\delta}|| < \delta$, then A_{δ} is as desired.

(2) Observe that the set $\varphi_{\mathcal{F}}$ is invariant under compact perturbation, for any compact operator K, R(A+K) is closed.

On the other hand, if R(A) is not closed, we are done. If A is not semi-Fredholm and R(A) is closed. We can use the operator K as defined in the proof of (1). It is easy to see that K is compact, but R(A+K) is not closed. This completes the proof.

Proof of Theorem 2 "⇒" From Proposition XI 3. 20 (a) in [1], it is evident that $\lambda_0 = \min \{ \dim N(A), \dim N(A^*) \}$.

" \leftarrow " Assume that for an operator A there is a ball $B(A, \varepsilon) \subset B(H)$ and a constant M such that $\min \{\dim N(B), \dim N(B^*) < M \text{ for each } B \in B(A, \varepsilon).$

To prove that A is semi-Fredholm it is enough to prove that R(A) is closed. Let A = UP be the standard polar decomposition of A, assume by way of contradiction that R(A) is not closed, then it is easy to know that 0 is an accumulation point of $\sigma(P)$. If $P = \int \lambda dE_{\lambda}$ is the spectral decomposition of P, then for $\varepsilon > 0$, dim $(E([0,\varepsilon])) = \infty$. Put $P_{\varepsilon} = \int_{\varepsilon}^{\infty} \lambda dE_{\lambda}$, and denote $A_{\varepsilon} = UP_{\varepsilon}$, it is clear that $||A-A_{\epsilon}|| = ||U\int_{0}^{\epsilon}\lambda dE|| < \epsilon$,

and dim $N(A_{\epsilon}) = \dim(E([0, \epsilon]) H) = \infty$. This contradicts the assumption. The proof is finished.

Here it is valuable to point out that boundeness of dimension of compact perturbation for semi-Fredholm does not hold.

Next we shall give a result about an operator with closed range.

Proposition 3 Let $A \in B(H)$ be an operator with closed range then for each operator B with ||A-B|| < r(A),

- $(1) \dim R(B) \ge \dim R(A)$;
- $(2) \dim N(B) \leq \dim N(A)$.

Proof (1) If dim $R(B) = \infty$, we are done. Assume that dim $R(B) = n < \infty$. By the way of contradiction, if $\dim R(B) < \dim R(A)$ and note $\dim R(A) = \dim R(A^*)$,

we can choose an orthonomal set $\{e_1, e_2, \dots, e_n, e_{n+1}\}$ of $R(A^*)$. In this case, $\{Be_i\}_{i=1}^{n+1}$ is linearly dependent, therefore there are complex numbers λ_i , $i=1,2,\dots,n+1$, which are not all equal to zero and satisfy $\sum_{i=1}^{n+1} \lambda_i Be_i = 0$. Of course, we can choose λ_i such that $\|\sum_{i=1}^{n+1} \lambda_i e_i\| = 1$. In this case,

$$||A-B|| \ge ||(A-B)(\sum_{i=1}^{n+1} \lambda_i e_i)|| = ||A(\sum_{i=1}^{n+1} \lambda_i e_i)|| \ge r(A),$$

it is a contradiction.

(2) If $\dim N(A) = \infty$, we are done. Next we assume that $\dim N(A) = n < \infty$. By way of contradiction, if $\dim N(B) > \dim N(A)$, then there is an orthonormal set $\{f_1, f_2, \dots, f_n, f_{n+1}\} \subset N(B)$. If $\{e_1, e_2, \dots, e_n\}$ is an orthonormal basis of N(A), then the following system of equations

$$\sum_{i=1}^{n+1} \lambda_i(f_i, e_j) = 0, \quad j = 1, 2, \dots, n,$$

has a nonzero solution, this shows that there is a nonzero vector $\sum_{i=1}^{n+1} \lambda_i f_i$ which is orthogonal to N(A). Choosing λ_i such that $\|\sum_{i=1}^{n+1} \lambda_i f_i\| = 1$, we have

$$||A - B|| \ge ||(A - B)(\sum_{i=1}^{n+1} \lambda_i f_i)|| = ||A(\sum_{i=1}^{n+1} \lambda_i f_i)|| \ge r(A)$$

a contradiction, the proof is finished.

Reference

[1] Conway, J.E., A course in functional analysis, Springer-Verlag, New York Heidelberg Berlin, 1985.

半 Fredholm 算子的一些特征

杜.鸿.科

(陕西师范大学数学系, 西安)

本文给出了希尔伯特空间中的半 Fredholm 算子的一些特征,证明了三个算子是半 Fredholm 算子,当且仅当它的值域在紧扰动和小摄动下均为闭的,并且还证明一个算子是半 Fredholm 的当且仅当在小摄动中零空间的维数是有界的。