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.Abstract

~ The condition of a polynomial interpolation operator and the numerical stabi-
lity of an algorithm for polynomial interpolation are defined., The main result is *
that both Newton and Lagrange -interpolation algorithms are numerically stable
provided that the nodes are evenly distributed, but the extrapolation computation
of these methods will lose the accuracy whatever the nodes are,

{ Basic Concepts

It is necessary to analyse the roundoff errors and the credibility of the com-
puted results for polynomial interpolation. For example, given y= S =(1.0D%
x€(0,1.5) and 11 support points (x,,y,), i=0,1, e, 10 where x,=0.01xi, i=0,1, s
9, x0=1.5, y,=(1.01)%,i=0,1, «,10. We denote the Lagrange or Newton poly-
nomial whose degree dose not exceed 10 by Dio(x) for which p,(x;)) = f(x;),
’i=0', 1,++,10. If only the truncation ‘error | pio(x) = f(x)|, x€(0,0.2] bounded by
7E-14, is considered, p(x) is a good approximation of f(x),x¢(0,0.2]. But if
we calculate p o(x) on the computer with 7 decimal digits, the computed re-
sults contain only one significant gigit when xe{0.136,0.16] and they have no
significant digit at all when x€(0.164,0.2J.

Now we present.some basic concepts. For a given set of support points

(X, V) ={(x,y) | xiFx;, for i+ j,i=0,1,,n} (1)
and the set of polynomials g.(x) of degree <n
Q.= {gx(x)|deg(q,(x))<n}, (2)

Definition | The polynomial interpolation operator P(X,Y)
P(X,Y): (X,Y)»P,,'(x)(Q,,, Xel(xg,X 5y X,]
. p"(x,-):y’.’ i:{),l’ oo, 1

(3)

is called ‘ill- conditioned if the solution p.(x) to be computed is very sensitive
to small changes in the data (X,Y). otherwise P(X,Y) is called well-conditioned .
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Consider the corresponding perturbed problem of (1)—(3)
(X+AX, Y+AY) ={(x;+ &, y;+n)|x;+ e, Fx;+&;,iFj,i=0,1, =, n}
P(X+AX,Y+AY), (X+AX,Y+AY)->p(x) +3p,(x).
And p,(x) in (3) can be expressed by the basis polynomials {§,(x)}; of Q,:

Palx) =3 y;,(x) . (4)
i=0
From the Taylor theorem of multivariable function, we have
16p,1<<e 3" (1,0 |+ | o p,08,00) /0x,]) + 06" L6Cy(x, X, ¥)+ 0>  (5)
i=0 Jj=0

where ¢=max(e,l, |n,],i=0,1,,n). C,(x, X,Y) can describe the sensitivity of
P(X,Y) in (3), and is called the condition number of polynomial interpolation
operator P(X,Y). | .

' In fioating computation we use the set of floating representations of (1)

(SUX), FICY D= {(fI(x), fICy;))), i=0,1, 0, 0}, (1) -

instead of (1). We suppose that fI(x)F fI(y;,) for i#j. Let. pXx) and p,(x)
obtained by an algorithm denote the exact and computed polynomial of the
interpolation problem (1), (2) and (3) respectively. Since p,(x) is the exact
solution of problem (1)—63), hence

. (6)

obviously p,(x)— pXx) results from .the data input errors, but pXx) - p,(x) co-

[Pa(x) = D) | <] pu(x) = PR |+ | X x) = po(x)

mes from the roudoff errors produced by carrying out algorithim (A). Let ¢
denote the machine precision, and ¢=C{¢, Where C is a constant. Ignoring the
high order terms of ', we have approximately
' | p(x) = ()| <ECC,(x, X, Y) + {Crlx, X, Y) . (7)

Definitionlz Algorithm (A) is numerically stable if pX(x) —E(i)‘has the sa-
me order of magnitude as (Cr(x, X, Y), where Cg(x, X, Y)\is a bounded func-
tion.

Notice that if C,(x, X,Y), the inherent property of a given interpolation
problem is so large that p,(x) can not attain the given accuracy, it is impossible

to improve the accuracy of computed solution only by studying the algorithm,

A
i

2 Main Results

From now on suppose that x]s,y/s of (1) are standard floating point num- .
bers or zeros, We will consider Algorithm 1 for carrying out the Lagrange inter-
polation formula, . ‘ .

Pa(X) = 29Xy, $,(x) = H(x— x;)/(x; = x;), x€l(Xxq,e=s X,
i=0 j;?
Algorithm | Set p,(x)¢0.
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For i=0,1, «-, n, compute
p,=1;
For j=0,1, s, n, j#i, compute
b= (x—x,)/(x;— x;), N

' Pa(X)C p(X) + 4y, .

Theorem | For the interpolation problem (1)—(3), let x be a standard
floating point number or zero and p,(x) be the computed result by Algorithm
1. Then _ ‘

|5, (x) = Pu(x)|<¢C(x, X, Y) (5n+1) + 0D, (8)

where

. . (9)

Culx, X, Y)= Y |4(x)y
- i=0

Proof From formulae of roundoff errors of the fundamental floating poing

arithmatic operations, we have
FIBC) =90 A+ ESY), P =Y 9(x)y(L+ E*)). (10)
i=0

where -

' A-O" <+ EV<a+ 0", -0+ EP<a+ 0 an

It follows . o
[p,,(x)——p—,,(x)l_<,§'_nZO¢,-(x)y,»E,-(2)|£§(5n+l)g)ll/ii(x)yi|+0(§2). [

Here the quantity C,(x, X, Y)= S #.(x) y;| truly reflects the numerical sta-
) i=0

bility of Algorithm 1,
Corollary | Let x,=x,+ih, i=0,1,+,n, Where h>0'and x€(xy,x,] are
either standard floating point numbers or zeros. Then
| Pu( %) = D) | <(BA+ 1) ¢V 2"+ 0L, Viar= m?X{l)’:l} . (12)
Proof Let IT(x) zfl(x—xj), we can easily prove that |IH(x)|<n1h", xe
it
(xo,x, ). Therefore we can immediately -obtain that [0 x)|<<CL, i=0,1, e n.
Finally it follows
[ 5a(x) = P | < (5A+ 1) LY ax ﬁOCHO({z) <(5n+1)¢Y,2"+o0¢h. B

The right hand side of (12) contains the factor 2", it explains the unsta-
bility of high order interpolation. So generally the degree of interpolation is
restricted (say n<<6). Under such condition, the Lagrange algorithm for the in-

- terpolation problem with equally spaced nodes is numerically stable.
4 It is well known that the Newton interpolation formula depends on the di-
vided difference scheme , generally speaking, in floating point computation the
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symmetry of the divided difference is no longer true.
Algorithm 2 ‘
For k=0,1, e, n, set y(x,) =y,
For i=1,2,,n, k=0,1, e, n—i, compute
Pxpsorey X ) = (P Xppoeny X, ) = KX oo X, D/ (X=X, ) e (13)
The computations take place in order of (13).
Theorem 2 Let y(x,, -, x..p be the computed result by carrying out Algo-
rithm 2. Then

’(—)’—(Jk,--°xk+,) y(xk’".’ xk+i)|£g Zyj+ilyk+j/"l‘;]:_(xk+j’xk+m)|9 (14)
j=0 J

where
3, i=1 and j=0,1

V:,.1*+3, Jj=0
pia=d ot . . (15)
’ Vii-1t Vg, i-1t 3 =1 2500, 01
Vicy, i-1+3 J=1. '
Furthermore, we have
17,0 <(2.0D"? . (16)
Proof The proof can be completed by induction and from the fact that
2(2.01)"+3<(2.01)" for p>9. Here we omit the detail. B
Corollary 2 Let M,= max{ll/n(x ~x ) Y= rgaé.{lyjl}. Then
05 =i
[ 7(xg,eeey x,) = y(xo,---,x,>]§g(2.01>‘”<i+1>M,Ym,x. . (7)

The proof is trivial.
We can easily prove the following theorem loy induction,
Theorem 3 Suppose that x,= x,+ih, i=0,1, ¢, n, >0, then the computed
result y(x,,+,x,,.) by Algorithm 2 safisfies;
ly(xk9xk+l’ oty Xpe ) T P X X gyttt xk+l)|££Ymax2'+21/(l 1A . (18)
Theorem 3  shows that Algorithm 2 is numerically stable, so the result of
iTheorem 3 is quite satisfactory. |
Algorithm 3 ’
Tompute y(xy, x; ,**, x;), i=0,1,+-,n by Algorithm 2,
P X))y, ' ’ ‘
For ;': 1,2, 00, 1

sl

T, & y(Xgs X000, %) 5
For j=1,e¢,i-1,
T=T(x— x;)
.D,,(x)<:p,,(x) +T, .
From Theorem 2 and through simple roundoff error analysns, we have
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Theorem 4 For interpolation problems (1)—(3), let xel[(x¢,*,x,) be a
standard floating point number or zero, and p,(x) be the computed result by
Algorithm 3. Then

15.(x) = Do )| ECu(x, X, ¥) (2,01 2+ 20+ 1) + OCLY), (19
where . :
Cy(x, X,Y)— Zly, H(x xk)/l_I(x X, (200
i=0 j=

Quantity Cy(x, X, Y) reflects the numerical stability of Algorithm 3 for New-
ton interpo]ation. But the most leading factor for determining the numerical

stability of Algorithm 3 is Cy{x, X)= max IH(x xk)/l—[(x IR

0<i<in—-1 k=0
0<j<i

The following theorem shows that the Newton algorithm with equally spa-
ced nodes 1s numerically stable whenever n is nol too large.

Theorem 5 Suppose that x,=x,+ih, h>>0,i=0, 1,---;n. Let xe[x,,x,] be the
standard floating point number or zero, and p,(x) be the computed solution by
Algorithm 3 for interpolation problem (1)—(3). Then
| pa(x) = P <Y, ol 60+ 13", (21)
Proof Since . '

| ¥(xg, X1 yoeny x) | < Ypui2 /Gt R, (22)
and ’ -
|kr_£(x—xk)|/<uh">gcj, i=0,1, e, (23)

(21) follows from Theorem 3 and 4. _ L B
As mentioned above there are two conclusions:1. If n and Y,,, are not too
large, both Lagrange and Newton interpolation algorithms with equally spaced
nodes are numericalily stable. 2. The extrapolation computation of these methods
- may be numerically unstable whatever the nodesare. It is clear that C,(x, X, Y)

and Cp(x, X,Y) increase rapidly ‘'when x is out of the interpolation interval.
3 Numerical Examples

We have tested some numerical examples on an IBM-PC computer. Below
let p,(x) ¢(py(x)), pi(x) (py(x)) denote the exact and computed results of Lag-
range (Newton) interpolation algorithm respectively. Those figures underlined
indicate that the accuracy by Lagrange algorithm is higher than Newton's.

Ex | Given for n=10, x=0.01Xi, i=0,1, ,9,x=1.5,y=e" ", i=0,1, -,
10. Wanted; p,o(x) for which P,o(x;)=y,, i=0,1, 4,10,
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Table |

x [P (0= p, ()| | | pa(x) = Pl | Crlx, XD
.005 1.204 E- 6 2,04 E-7 4.16 E1
055 5.3E-8 5.3E-8 9.0
.085 7.26 E-7 2.74 E-7 3.97 E1
.093 2.34E-5 1.65 E-6 2.3 E2
.095 2.3E-5 4.3 E-6 5.8 E2
.1 4.36 E- 6 2.36 E-5 2.96 E3
1 7.49 E— 14 2.1E—4 2.7 E4
12 4.52 E- 3 1.05 E-3 1.38 E6
15 7.72E-2 3.14 E-2 4,29 E7
2 1.763 1.2 1.7E8
.25 15.7 15.1 2.16 E9
.1 763 E7 6.5 E6 9.64 E14

Ex 2 Given x;=i, y;=100 Xsin(x;), i=0,1,++,9, and x,,=100, yo=200.
Wanted: po(x).

Ex 3 Determine p,o(x) satisfying y,= f(x;) = (1.01)™, x,;=0.01 Xi, i=0,+,9,

Xig ™ 1. 5.

Table 2

x [ 2.(0) = ()| | | PN(X) = P X)] C,(x, X)
.5 5.46 E—4 2.46 E— 4 3.15 E3
.8 4.62 E- 4 6.24 E-5 1.2 E3
1.1 1.67 E-4 3.29 E- 5 7.55
2.5 1.23E-4 2.25 E-5 8.38 E2
8.5 2.87T E—4 4.49E-3 2.92 E3
9.2 5.02 E -4 . 7.6E-3 8.93 E3
9.5 2.58 E—4 9.42 E- 4 4.3E4
10 l.2E-3 1.83 E-3 2.17 E5
11 0.21 0.12 1.98 E6
12 1.24 0. 57 1 E7

14 34 .84 6. 86 1.15 E8
101 4.4 E8 1.39E8 2.4 E15
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Table 3

| pL(x)— p,(x)| | pn(x) = pa(x)] ‘
x or [p(x)— f(x)] |,;N(x) - f(x)] €l X lp,,(x)—‘f(x)]
- .085 8.1E-2 0.248 3.2E6 3.1 E- 14
- .03 1.5E-3 9.6 E-4 1.24 E4 1.2E-16
- .02 5.8 E—4 1.87 E-4 2.4 E3 2.31 E- 17
-.01 5.3E-5 2.1E-5 2.6 E2 2.5E-18
* .0001 4. 7TE-7 0 2.5 2.4 E-20
.065 2.4E-7 0 9E-1 8.7 E-21
085 0 2,4E-7 3.3 3.2E-20
.1 9.4E-6 LI5bE-5 2.4E2 2.3E-18
12 6.1 E—4 8.4 E-4 1.13 E4 1. 08 E - 16
.138 1.5E-2 7.97 E-3 1.1 E5 1.05 E- 15
.15 6.7E-2 2.65 E-2 3.5 E5 3.3E-15
.166 3.7E-1 1E-1 1.4 E6 1.33E-14
.187 2.6 4.5E-1 6.2 E6 5.6 E- 14
2<x<1.49 Failure (E6,6E13) {(6E-14,6 E-7)
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