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Abstract

We construct real valued functions from infinite sequences. We also consider

some properties of such functions and null sequences.

| . Introduction

Let Z, be the set of all positive integers. Let {a,) be a sequence. Let >0
be a positive number. We define n(¢) to be a positive integer depending ont as
n(t)=min{meZ . |la,- a,|<t, for u,y>m}. We now define an integer valued
function f(a,;t) as f(a,;t)=n(t). We study some properties of functions f(a,;
t) defined by sequences (a,» in connection with sequences {(a,>. We also study
null sequences referring Knopp [ 2 ]. We have some theorems and examples of
graphs of functions defined by known sequences such as (1/n), (1 +r+ri+ e+
P 0<r<1), (1/nClogn)), and (1/(k)"; k is a positive integer greater than 1).

2 . Functions defined by Sequences

R denotes the set of the real numbers. S(R) denotes the set of all sequen-
ces {(a,> over R. We define CS(R)={{a,>eS(R); (a,) is a Cauchy sequence} .

Definition | Let (a,)e¢S(R), r>0. We define n(t) as n(t)=min{meZ_;
la,~a,|<t for u,»>m} and a function f(a,;r) as f(a,:t) =n(r).

Definition 2 Let (a,>¢S(R). Let neZ, . We define ¢(n) as r(n) =inf{re(0,
©); |la,~a,|<t, for m>n}, where inf T denotes a least upper bound of the set
T.

Lemma | Let (aq,>¢CS(R). Then f(a, ;t(n)=n or f(a,;t(n))=n+1.

Proof Suppose that f(a,;t(n))¥+n. Let 6(>>0) be a sufficiently small posi-
tive number. Then we have f(a,;#(n)+d)=n, and hence f(a,;t(n))=n+1.
This proves the lemma 1,

Theorem | (1) Let {(a,>¢S(R). Let 6>0. If f(a,;t)=0 te(0,d), then <a,>
is not convergent. .

(2) Let {a,>¢CS(RY. Then, for any >0, f(a,;t) is a piecewise non-
increasing continuous function on (J, o),
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Proof Example 5 proves (1). We consider (2). By Lemma 1, either f(a,;
t(n)) is equal to n or else is equal to n+ 1. Suppose that f(a,; t(n))=n.
Then f(a,s;t)=n for ¢ such that r(n)<<t<t(n-1). This proves that f(a,;t) on
(6,0) has at most finitely many discontinuities. Since the sequence is Cauchy,
it is clear that f(a,;t) on (J,°0) is non-decreasing. This proves the theorem.

{a, > in CS(R) is called a decreasing sequence if a,.,1<a, for all n. We
denote by CS(R; v0) the set of all decreasing Cauchy sequences {a,) such that

lima,=0. We prove Theorem 2.

n-» o0

Theorem 2 Let <(a,>¢CS(R;0) and let neZ,. Then t(n) =a,.

Proof Let neZ . We recall that 7(n)=inf{7€(0,°0);|a,—a,|<t for u>nj..
Therefore we see that
3. a,=l+r+ritee+rm™ly 0<r<1) .

In this section we consider the sequence <a,)> defined by a,=1+r+ Pt et
r" " and 0<r<l1. We often use a,=(1-r")/(1-r).

Computation Let neZ, . We compute t(n) = inf{re(0,o0), Ia,,—a,,|<t, for u_>nj
and find it as ((nw)=r"/(1-r).

Theorem 3 Let 0<r<{1 and a,=(1-r"Y/(1-r). Then we have the following,

a,-a,|=a,-a,<a,for u=n. This proves the theorem.

(1) fla,sttn)=n. (2) fla,st)=n for te(t(n),t(n-1)), (3) folf(a,,;t)dtzl/
(1-r?.
Proof (1) We start with |a,—a,|=|(r"=r")/(1-r)|<r"/(1-r) for all m>

n, which shows that (n)=r/(1~-r). (2) follows from the definition of ().

=]

folf(a,,_';t)dt:Zn(t(n—l)—t(n))= Sarm T /- =/ A=) =St = (d/dr(L +

n=1

+rl+ ey =d/dr(l/(1-r)=1/(1-r?*. This proves the theorem.

4 . Exarples

In this section, we have five examples of sequences and their function-
graphs.

Example | We conside the null sequence <{1/n)=<a,>.

We obtaine that r(n)=1/n for all n in Z_. We see that f(1/n;t(n)) =n,

folf(l/n; 0dr=2(1-1/2)+3(1/3-1/2)+4(1/4-1/3) +==14+1/2+1/3+1/4 + «+ and

[ J/n0dr=1+1/2¢1/3+ s 1/n,

Example 2 Letting a,=1/k" and 1<ke¢Z,, consider <a, ).
We see that r(n)=1/k", fla,s t(n))

=n, and folf(a,,;t)dt=1/(1_k)' Sf(a -,).'

Example 3 Let q,=(1/(n+1)) (log(n+1) ‘

904 — t(n)
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and consider {a,», which is a null sequence. We find that r(n)=(1/(n+1))
log(n+1), f(a,;t(m))=n, and folf(a,,;t)dt=3(l/2 log2-1/3 log3) +4(1/3 log3

~1/4 log4)+«+=3/2 log2 +1/31og3 +1/4log4 + +-+, which is divergent,
Example 4 Let q,=1-1/n and <a,>. We know that lima,=1. Let t=1/m.

We compute a(r) and find that n(t) =m. We see that f(a,;n(1/m))=m and

folf(a,,;t)dt:in.
1

Example 5 Let ((-1)"%. We see that folf(a,,;t)dtzo. f(a,,:t):“[

We draw a graph of the function defined by the seqence, 0 1 2

5. The null Sequences

Knopp[2] has a section of the null sequences and we can find some inte-
resting theorems such as [2, p.60];

Theorem 4 If |a|<1, then besides (a") even <(na") is a null sequence.

Theorem 5 Let a,="/n-1. Then (g, is a2 null sequence, see [2,P.62—(5)].
The proof of Theorem 5 is interesting. Let aeR. We first define CS(R;a) =
Ka,>eCS(R),; "liirgoan:a} and CS(R;a)+ b={{a,+b>: (a,>cCS(R;a)}. The follo-

wing theorem is trivial.

Theorem § CS(R; a)=CS(R;0)+a.

This theorem indicates that the null sequences CS(R; () are important.We
focus attension on CS(R; {0). Let qa,= "“1/n+1 -1 and  b,=(1/(n+1))log(n
+1). We prove Thegrem 7.

Theorem 7 Let q, and b, be defined in the above. Then lima,/b,=1.

n-» o0

Proof Let a,=x-1. Then  limg,/b,=1lim(x-1)/logx= lim 1/(1/x) =1, by

L’Hopital’s Theorem.
t Note Theorem 7 has many meanings and it is important to consider sequen-
ces in CS(R;}0). We refer to [2, p. 280] and mention that. (1/(nlogn)>, ) ,
iy, 2"y, (3", {1/(n1)), {1/{(n")) are such that each congerges (to () more ra-
pidly than the preceding.

Table
We have a table for two sequences qa,= "”ﬁzTI -1 and b,=(1/(n+1))
log(n+1):
1 b,=0.150515 a,=0.4142135
2 0. 1590404 0. 4422495
* 3 0.150515 0.4142135
4 0. 139794 0. 3797296
5 0.1296918 0.3480061
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6 b,=0.1207282 a,= 0.3204692
7 0.1128862 0.2968395
8 0.1060269 - 0.276518
9 0.1 0.2589254
10 0. 0946720 0. 2435752
11 0.0899317 0.2300755
12 0. 0856879 0.218114
13 0.081662 - 0. 207442
14 0. 078406 0.19786
15 0. 0752574 0. 1892071
16 0. 0723793 0.181352
17 0.0697373 0.1741872
18 0. 0673028 0. 1676234
19 0. 0650515 0.1615863
20 0.0629628 0. 1560132
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