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Abstract
In this paper, we present a fast algorithm for banded Toeplitz linear systems as
as well’as banded triangular Toeplitz linear systems, The methods presented in
this paper are based on the fast solution of triangular Toeplitz linear systems
and the fast solution of Toeplitz linear systems, As an application, we give
an algorithm for the polynomial divison with a remainder,
| . Introduction
A Toeplitz matrix is such that its elements ¢, *s are function of (j-i),
i.e,i,j‘= t,;.  Hence, a Toeplitz matrix is completely defined by its first row
and first column. Here we consider banded upper triangular Toeplitz matrices
(ie.t,= 0 for k<0 and k> p) anh banded Toeplitz matrices (i.e.f,= 0 for
k>q and k<-p). Thus, an nxn banded upper triangular Toeplitz matrix U,
is of the form ‘

[0 tl ese tp

to ™
U,= o, | (1.1)
W
ty
and. an nxn banded Toeplitz matrix T, is of the form
Mt L YNEITI 8 -
. Lo
) T,= | i ISR '; (1.2)
. L v
— e 1, oo ..'f~i “Tne t, —

Sparse Toeplitz or nearly Toeplttz occursin many mathematical applications
Examples are in image processing [ 9], solution of certain partial differential
equation [10], higher order spline approximation [11] and possibly in many
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other applications . In a large number of these situation it is desirable to solve
the following linear equation -

TX=5» - (1.3)
where T is an nxn Toeplitz matrix, When T is strongly nonsingular, an algor-
-ithm, presented by Zohar [ 6], showed that linear equations (1.3) can be -
solved in 3n? arithmetic operations vs, O(n’). Ful"the,r improved results [ 7]
reduced the computational cost from O(n? to O(n-logzn). When T is triangular
Toeplitz matrixes the number of operations is reduced to O(n-logn) [5]. Jain

[ 1] presented an algorithm for solving linear systems (1.3), when T is banded
His methods are based on certain circular decompositions of the matrix T, that
reduces the solution of T,X =b to the solution of two sets of simultaneous
equations, One set requires solving an nxn circular linear system, The dom--
inant work is in performing the fast Fourier transform, The other set requires
solving a Toeplitz equations of order O(m), Therefore, his algorithm requirs
O(n-logn + m log’m) operations by fast solver of Toeplitz linear system, where
m=max(p, ¢), However, the method is not efficient for banded Toeplitz
‘ equations,when min(p, q)<n, Another algorithm for banded Toeplitz linear
equations was giveh by Chen [ 2] when Toeplitz matrices are symmetic, The A
method is based on the circulant factorization of banded circulant matrices
and all rootsfounding of the polynomial whose coefficients are the elements
of banded Toeplitz matrices, It is expensive, Recently, Trench [ 3] presented
a new algorithm for the same euqgation, The cost of his algorithm is O(n max

(p, 9)+ (min(p, 4))?% operations .

Here we show that the computational cost can be reduced to O(n-logp) and
O(n.log(q + p) +min(p, q)-log*(min(p, q))) for banded upper triangular Toep-
litz linear systems and for banded Toeplitz linear systems respectively, The
usefulness of the present methods will clearly be substantial when min(p, q)
is of a lower order than n, e.g, in large scale, sparse, Toeplitz systems, The
method presented in this paper is based on the fast solution of friangular
Toeplitz linear systems, the fast solution of Toeplitz linear systems and the
fast Toeplitz ma_trix—vector product . ,

As an application of the method presented in the paper.we considered the
polynomial division with a remainder in section 5. Let f(x)= Zm]aix" and g(x)

i=0
=i§__‘_,0b,x’ be two polynomials of degree m and n respecti&ely (n<m), We

k . .
showed that the ceofficients of the quotient g(x) = Zq,x’ and of the remain-
=0
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n-1
der r(x) =3 rx' such that
i=Q

f(x) =g(x)q(x) +r(x)
can be found out in O(m-.log(min(n, k))) arithmetic operations, where k =m
-n,
2 . Teeplitz Matrix- Vector Product and Solution of Triangular
Toeplitz Linear Systems '

For our purpose, it is necessary to state the following results,

Proposition 2.1| [5] Let T be a square Toeplitz matrix of order »n and
be a complex n-vector., Then the matrix-vector product 74 can 'be computed
in O(n-.logn) operations ,

Let U be an upper triangular Toeplitz matrix which is defined by its first
row (tg t; =~ 1,,) and L be a lower triangular Toeplitz matrix which is defin-
ed by it first column (b, b, «. b, )7, The following theorem is efficient to
invert U énd L if U and L are nonsingular,

Theorem 2.20%1 Let Y=(n,, n,; )7 be the solution of the upper
triangular Toeplitz linear system

vy =e, ) (2.1)
and Z = (8, B, e« B, )7 be the solution of the lower triangular Toeplitz linear

system ‘
LZ =e, . , (2.2)
Then the inverse of U and L are given by :
o My = Man
U= UM (2.3)
. N m
L " 7,
ahd
o
. ’3:1 ”0 (2.4)
\_. S S

B o By B,
where €,=(0 00 1) and e, =(1 0+0)",

For conveniece, we assume that n =2’ for. some positive integer p and de-
note the 2*-subvector of y with the last 2* entries of y as its components by
y*1 e, :

.V(k) = ('72':_1""71 'lo)T: k=1,2,%, P, | : (2.5)
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which satisfies the linear systems
vy =co o T (2.6)
where U* is submatrix of U of the form

to !1 eee | k_

U® - fo e ° .

Clearly

(k : - .
u® = v y®o - |1 : (2.7)
= y*-n = | y*-D .
~k-1) ‘:IZH - Fet :l
v V=1 ¢ - :
81 es o fzk—l

- k-
(k 1)>< k-1)

isa 2 2 Toeplitz matrix and
Y(lk—l) = (’721:__ 1 ’72k—1 )T.:
We now consider triangular Toeplitz linear systems
Ux =d _ (2.8)
We partition the ﬁnknown vector x énd right hand side d in the way of
partitioning Y in (2,5} and (2.7). An efficient algorithm for solving triangular
Toeplitz linear systems (2.8) and for inverting U was presented by Chen and
Lu [5]
Algorithm J
1. Let 79 =4, x© =¢5'd,
2. For k=0, 1,, p—1
i) Compute Y = _ (% y-1gico) po
x® = @Ry (P -TP x*) _
ii) Assemble the vectors Y, ¥* and XF, X via (2.7) to generate
the result vectors Y**1) apq x®+D |
iiiy Using ¥**V to form (U**!)™
Applying the proposition 2,] to algorithm I, Chen and Lu [ 5] showed
their results as follows, '
‘Proposition 2.3 Solution of linear systems (2,8) can be computed in O(n-
logn) operationsas well as inve_rsion of upper triangular Toeplitz matrices.
Propdsition 2.4 Solution of lower triangular Toeplitz linear systems Lx =d
can be computed in O(n-logn) operations as well as inversion of lower trian-
gular Toeplitz rpatricés .
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Corollary 2.5 The matrix-vector product T4 can be computed in O(max(n,
m) -log(min(n, m))) operations,where T is an mxn Toeplitz matrix and b is an
n-vector,
- Proof Without loss of generality, we assume that n=km for some positive
‘ integer. k, if n>m partitioning 7 and b as

! :(Tl TZ“. k)
. b, -
b'= bz ’
b,

we obtain that
- Tb=Tb, +Thy+e+Tb,,

where T,’s are Toeplitz matrices of order m, b,’s are m-vectors, the conclus-
ion is immediate from the proposition 2.1.

The proof is analogous, if n<<m.

3 . Fast Solution of Banded Triangular
Toeplitz Linear Systems

In this section, we will present an algorithm for solving the linear system
(1.3), when T=U,, i.e, .

. UX==>. (3.1)

Let n=pg + p, for some non—negati_ve integers g and p, 0<p,<p If p,< 0,
the extension of (3.1) given by

a-0 o o

is considered, where U} is a banded triangular Toeplitz matrix of order (gq+
1)p with the first row (£, #,+++¢, 0 *+0), Y is unknown (p- p;)-vector, We

U, U’
=y o)
b O U/

where T’ is nx (p—-p,) Toeplitz matrix and U’ is upper triangular Toeplitz

- partition the matrix Uj as

matrix of order p-p,. Clearly, Y =0 and X is the solution of (3,1).Therefore,
" without loss of generality, we assume that n=pg for some positive integer ¢ in
this section, ' ‘
Partitioning the matrix U,, unknown vector X and known vector b as

Ul Ll Xl bl
- U Ll X2 b2
Ub: ' ‘e, e I‘1 ’ X = E ’ b = E
) U, Xq bq
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We can see the equation (3.1) is equivalant to the following equations
U, X,=b,, (3.3-1)
UlXi+L1Xi+i:bi’ (3-3_2)

where U, is a px p upper triangular Toeplitz matrix of the form
t() tl YY) t 1

U, = ., e

p-1
X,s are unknown p-subvectors of X and bjs are p-subvectors of b, Therefore,
linear systems (3.1) can be solved in the following stages,
Algorithm 01 (Solver for banded triangular Toeplitz linear systems)
1. For k=q, U<«U,, deb, perform algorithm I
2. For k=g —1,, 1
i > Compute L X, , <
ii) Compute Z;,‘zb,‘—L,X,(,,l
itiy U«U,, d=b, perform algorithm ] without computing $O
It takes ¢ stages to compute the algorithm, For k=g -1, *, 1, at each
stage the dominant work is in performing triangular Toeplitz matrix-vector
multiplication and algorithm ] without computing y(k) , at stage k =q, the com-
putation is in performing algorithm I, Using proposition 2,1 and 2,3, perform-
ing algorithm I requires only O(gp-logp) +O((g—-1)p-logp) +0((g-1)p) —
O((g-1)p) =0(n.logp) operations at most,
Proposition 3.1 Linear system (3.1) can be solved in O(n.logp) operations
as well as lower triangﬁlar Toeplitz linear system,
4. Solution of Banded Toeplitz Linear Systems
Using previous results presented in this paper, we consider another case
of (1.3) when T'=T,, i,e, the banded Toeplitz linear systems ‘
T X =b 4.1)
in this section, where T, is a banded Toeplitz matrix given by (1.2).
We assume qu without loss of generality, Let f,, be the (n+p)x(n+p)
upper triangular Toeplitz matrix whose T, is a submatrix. The following shows

the relations between T, and T,
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[U
. T, = [‘g] (0 T U)J (4.2)

where U is a px p upper triangular Toeplitz matrix of the form

» \ ) [p see tl
TR
. *e t

. p
» Note that X is a solution of (4,]) if, and only if there exists a p-vector

Y such that linear equation v

=7z _ [
D[W‘J_[y]y (4.3)

has a solution in which z= ¢, in fact, in this case we have w=x, where z
and y are p-vectors, v

Since t,# 0, then 7;‘ is nonsingular, Using Theorem 2.1, the inverse T,'
can be computed by solving the following linear equation

~

Tu=e,., . (4.4)

n+p

Let u=(u e, uO)T,: then 7;' is also an upper triangular Toeplitz ma-

Uy oo Upy 1
o .
T,'= : .
Uy

Thus, we can compute ﬁ" by performing algorithm I,
Partitioning T! as .
~ A B-
m-le bl
cC D
z A B b
(21-[28) [0
w C D y :

where A is a pxn Toeplitz matrix B is a px p Toeplitz matrix. G is an nxn

n+ p=1Y

trix of the form

clearly, we obtain

upper triangular Toeplitz matrix, D is an nxp Toeplitz matrix .
5N It is easy to check that submatrix B is nonsingular, Furthermore, from (1,
5), we can verify the relation between z and y, in fact, we have '
z=Ab+By. (4.6)
From (4.6), we have that the solution (4,3) fulfills the condition z'=9, if

and only if
By = —A4b. (4.7
Thus, the linear system (4,1 )can be solved in following stages
stages Operations
1. Compute T,' by performing O((n+p)-log(p +¢g))
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algorithm T
2.Compute Ab
3.Solve linear equation (4.7)
4.Solve linear equation (4.5)
by performing algorithm [
The evaluation of the arithmetic operations at stages 1 and 4 were attain-
ed by proposition 2.4, that at stage 2 was attained by prqposition 2.5 and
that at stage 3 was attained by the fast solver of Toeplitz linear systems [§].
The overall computational cost is O(2(n + p)log(p +q) +n-logP + P log?P) =0(n-

O(n-logp)
O(p-log?p)
O((n+p)-log(p+q))

log(p +q) + p-log?p) opearations .
Proposition 4.1 The banded Toeplitz linear systems (4.1) can be solved in
O(n-log(p +4q) +min(p, g)log?(min(p, ¢))) arithmetic operations .
§ . Polynomial Division
As an application of the method given in section 3. we investigate the
classical problem of polynomial division with a remaind‘er in this section,

Let f(x) =) ax', g(x)=3 bx' (a,#+0, b3 0, m>n) be two polynomi-,
=0

i=0
als over the complex number field, the classical polynomial division is to find
L3

.. .- K
out the coefficients of the quotient g(x) = 3 g,x" and of the remainder r(x) =
, . =

no1
3 rix' such that
i=o

f(x) =q(x)g(x) +r(x) (5.1)

where k=m —-n.
It is observed that the problem is equivalent to the following equation

b
[ Oa T -0 —
bn—l . m
: " ob, T O a,
‘e q - .
b, b, ik : (5.2)
. H rn—l
. N a,
. H 9, :
. a,
bo ] L_r() J
From (5.2), the coefficients of the quotient satisfies following equa-
tion ,
Q(qk, di—15 *** qo)T: (.a,,, a, - .'“a,,)T (5.3)
where Q a (k+1)x(k +1) lower triangular Toeplitz matrix of the form,
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b b,
Q= :
» bn*k wee * bnal bn
where b;=0 for i<0, and the coefficients of the remainder r(x) satisfy that
L Ay by e b, , 9py
o a, b, 9o

Therefore, the ploynomial division with a remainder can be done by solving
equations (5.3) and (5.1). k
It is easy to see that Qisa (k +1)x(k +1) banded lower triangular
Toeplitz matrix with the first column (b, b, *+b, 0 = 0)7, if k>n, and
’ bus_y 0 by

bO ose bn—l Gn . .

dr

ese
I
coe

b, 4, ' t . 90

*e

bn—k—l
b

0
if k<<n. By Proposition 2.4 and 3.1. (g, 4,4, * qo)T- can be obtained in
O(k-log(min(n, k))) arithmetic operations via (5.3) aﬁd (Fy_1*+ry)7 can be
obtained in O(n.log(min(n, k)) +O(n)) arithmetic operations via (5.4) by cor-
ollary 2.5. The overall computational cost is O(k-log(min(n, k)) + n-log(min (n,
k))) =0Um-log(n,m—n)) arithmetic operations ,

k .
Proposition 5.1 The coefficients of the quotient g(x) = ) g,x' and of the
. =0

. n-1 m
remainder r(x) = 3 rx’ of the division of polynomials f(x) =3 a,x' by g(x)=
: =0

i=0
m i . . . . .
3 b,x" can be computed in O(m-.log(min(n,m—n)) arithmetic operations, where
i=0
a b,,:?‘:(), m>n, k=m-n,
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