Derivations in A Prime Γ -Ring*

Zhang Yang

(Inst. of Math., Jilin University, Changchun)

Abstract

In this paper, we extend Posner's theorem and the nilpotency of a derivation to a prime Γ -ring. Our main result is the following theorem. Let R be a prime Γ -ring with two derivations d, f, char $R \neq 2$. If df is a derivation too, then either d=0 or f=0.

The notion of a prime Γ -ring was introduced by Luh [1]. In this paper, we define a derivation in a prime Γ -ring and give a generalization of Posner's theorem and some nilpotent properties for a prime Γ -ring with a derivation.

Let R be a prime Γ -ring. A derivation d on R is a mapping $d: R \rightarrow R$ satisfying the condition that:

$$d(x+y) = d(x) + d(y)$$

$$d(xay) = d(x)ay + xad(y), \text{ for any } x, y \in R, a \in \Gamma \in \Gamma$$

Lemma | Let R be a prime Γ -ring with a derivation $d \cdot 0 \neq a \in R$. If for any $x \in R$, $a \in \Gamma$, $aa \cdot d(x) = 0$, then d(R) = 0.

Proof For any $x, y \in R$, we have

$$aa d(x\beta y) = aa(d(x)\beta y + x\beta d(y))$$
$$= aa d(x)\beta y + aax\beta d(y)$$
$$= aax\beta d(y) = 0$$

By the primeness of R and $a \neq 0$ we obtain that d(y) = 0, for all $y \in R$.

Posner [2] proved the following theorem. Let R be a prime ring with two derivations d, f, char $R \neq 2$. If df is also a derivation then either d = 0, or f = 0. In following theorem Posner's theorem has been proved in a prime Γ -ring.

Theorem 2 Let R be a prime Γ -ring with two derivations d, f, char $R \neq 2$. If df is a derivation too, then either d=0 or f=0.

Proof For any
$$x, y \in R$$
, $a \in \Gamma$, we have
$$df(xay) = d(f(x)ay + xaf(y))$$
$$= df(x)ay + f(x)ad(y) + d(x)af(y) + xadf(x)$$
$$df(xay) = df(x)ay + xadf(y).$$

^{*} Received Jan. 3, 1990.

Then

$$f(x)ad(y) + d(x)af(y) = 0$$
 (1)

Let $\beta \in \Gamma$ and replace x by $y\beta d(x)$ in (1), we get

$$f(y\beta d(x))ad(y) + d(y\beta d(x))af(y) = 0$$

Thas is:

$$\int f(y) \beta d(x) a d(y) + d(y) \beta d(x) a f(y) + y \beta (fd(x) a d(y) + d^{2}(x) a f(y)) = 0$$

Since $fd(x)ad(y)+d^2(x)af(y)=0$, so

$$f(y)\beta d(x)ad(y) + d(y)\beta d(x)af(y) = 0$$
(2)

From (1), we have f(x)ad(y) = -d(x)af(y). Then

$$(f(y)\beta d(x) - d(y)\beta f(x))\alpha d(y) = 0$$

By Lemma 1, either $f(y)\beta d(x) - d(y)\beta f(x) = 9$ or d(y) = 0. If $f(y)\beta d(x) - d(y)\beta f(x) = 0$ from (1) it follows that 2f(y)ad(x) = 0. Because char $R \neq 2$ and R is prime,

$$f(y)ad(x) = 0 (3)$$

Let $z \in R$, $\beta \in \Gamma$ and replace y by $y \in y \in Z$ in (3), we have $f(y \notin Z) a d(x) = 0$, i.e., $f(y) \notin Z a d(x) + y \notin f(z) a d(x) = 0$

Hence $f(y)\beta zad(x) = 0$. By the primeness of R we obtain that either f(y) = 0 or d(x) = 0, for any x, $y \in R$. This completes the proof.

Next we shall consider some nilpotent properties of derivation in a prime Γ -ring. At frist we can obtain the Leibniz' rule of a prime Γ -ring with a derivation by induction:

$$d^{n}(xay) = \sum_{i=0}^{n} {n \choose i} d^{n-i}(x)ad^{i}(y)$$

Lemma 3 A Γ -ring R is a prime Γ -ring if and only if if $I_1\Gamma I_2 = \{0\}$ then $I_1 = \{0\}$ or $I_2 = \{0\}$, where I_1, I_2 are two left (right) ideals of R.

Proof The sufficiency follows from the definition of a prime Γ -ring.

Conversely, let R be a prime Γ -ring with two left ideals I_1 , I_2 such that $I_1 \Gamma I_2 = \{0\}$. Then

$$(I_1 \Gamma R) \Gamma (I_2 \Gamma R) = (I_1 \Gamma) (R \Gamma I_2) (\Gamma R) \subseteq (I_1 \Gamma) I_2 (\Gamma R) = \{0\} \Gamma R = \{0\}$$
.

Since $I_1\Gamma R$, $I_2\Gamma R$ are two-sided ideals of R, it follows that either $I_1\Gamma R = \{0\}$ or $I_2\Gamma R = \{0\}$, If $I_1\Gamma R = \{0\}$ then $I_1\Gamma R \subseteq I_1$ i.e., I_1 is a two-sided ideal of R. By the primeness of R we obtain that $I_1 = \{0\}$. Similarly if $I_2\Gamma R = \{0\}$ then $I_2 = \{0\}$.

Lemma 4 Let R be a prime Γ -ring. If I is a two-sided ideal of R then I is a prime Γ -ring.

Proof Let $a\Gamma I\Gamma b = \{0\}$, $a, b \in I$. Then

$$(a\Gamma R)\Gamma(b\Gamma R)\Gamma(b\Gamma R) = a\Gamma(R\Gamma b\Gamma R)\Gamma(b\Gamma R)$$

$$\subseteq a\Gamma I\Gamma(b\Gamma R) = (a\Gamma I\Gamma b)\Gamma R = \{0\}\Gamma R = \{0\}$$
.

From Lemma 3, we obtain that either $a\Gamma R = \{0\}$ or $b\Gamma R = \{0\}$. Therefore $a\Gamma R\Gamma a = \{0\}$ or $b\Gamma R\Gamma b = \{0\}$. However R is a prime Γ -ring, then a = 0 or b = 0.

Theorem 5 Let d be a derivation of a prime Γ -ring R. I be a nonzero

ideal of R, n is a positive integer. If $d^{n}(I) = 0$ then $d^{2n-1}(R) = 0$.

Proof Let $J = I + d(I) + \cdots + d^{n-1}(I)$. Clearly $d(J) \subseteq J$. We can prove that J is a nonzero ideal of R. For any $x \in R$, $a \in \Gamma$, $y = y_0 + d(y_1) + \cdots + d^{n-1}(y_{n-1}) \in J$, $y_i \in I$, $i = 0, 1, \dots, n-1$. We have

$$y_{i}ax \in I \subseteq J, \quad i = 0, 1, \dots, n-1.$$

$$d(y_{1})ax = d(y_{1}ax) - y_{1}ad(x) \in J,$$

$$d^{2}(y_{2})ax = d^{2}(y_{2}ax) - d(y_{2})ad(x) - d(y_{2}ad(x))$$

$$= d^{2}(y_{2}ax) - (d(y_{2}ad(x)) - y_{2}ad^{2}(x)) - d(y_{2}ad(x)) \in J,$$

By induction we can obtain that $d^{n-1}(y_{n-1})ax \in J$. So

$$ya x = (y_0 + d(y_1) + \cdots + d^{n-1}(y_{n-1})) a x$$

= $y_0 a x + d(y_1) a x + \cdots + d^{n-1}(y_{n-1}) a x \in J$.

Similarly $xay \in J$. Hence J is a nonzero ideal of R, and $d^n(J) = 0$. Let $y \in J$, $a \in \Gamma$, $r \in R$. By Leibniz' rule

$$0 = d^{n}(d^{n-1}(y)ar) = \sum_{i=0}^{n} {n \choose i} d^{n-i}(d^{n-1}(y)) a d^{i}(r) = d^{n-1}(y) a d^{n}(r)$$

Similarly, we have

$$0 = d^{n}(d^{n-2}(y)ad(r)) = \sum_{i=0}^{n} {n \choose i} d^{n-i}(d^{n-2}(y))ad^{i}(d(r)) = d^{n-2}(y)ad^{n+1}(r)$$

Continuing this argument we finally reach the identity $0 = yad^{2n-1}(r)$ for all $y \in J$ and $a \in \Gamma$. Set $y = x\beta y$, $x \in R$ $\beta \in \Gamma$, then $0 = x\beta yad^{2n-1}(r)$ for all $r \in R$. By the primeness of J we obtain that $d^{2n-1}(r) = 0$ for all $r \in R$. This completes the proof.

Lemma 6 Let R be a prime Γ -ring with a derivation d, I be a nonzero ideal of R. If there exists a positive integer n, and $a \in R$ such that for any $x \in I$, $a \in \Gamma$, a

Proof Let the set $J = I + d(I) + \cdots + d^n(I) + \cdots$ consist of all elements of R that can be written as a finite sum $y = y_0 + d^{i_1}(y_{i_1}) + \cdots + d^{i_n}(y_{i_n})$, where n depends on y, $i_j \in N$, $y_{i_j} \in I$, $j = 1, 2, \cdots, n$. We can prove that J is a nonzero ideal of R, and $d(J) \subseteq J$, $aad^n(J) = 0$. For any $x \in J$, $y \in R$, a, $\beta \in \Gamma$, we have

1

Continuing this argument we finally reach the identity

$$a\beta xad^{3n-1}(y) = 0$$
, for any $x \in J$, $y \in R$

By the primeness of J, either a=0 or $d^{3n-1}(R)=0$.

Theorem 7 Let R be a prime Γ -ring with two derivations d, f, I be a nonzero ideal of R. For a positive integer n > 1, if for any $x \in I$, $d_1 d_2^n(x) = 0$ then $d_1(R) = 0$ or $d_2^{3n-1}(R) = 0$.

Proof Similar to Lemma 6. Let $J = I + d(I) + d^2(I) + \cdots$ then J is a nonzero ideal of R, and $d_1 d_2''(J) = 0$. Let $x \in J$, $y \in R$, $a \in \Gamma$, then

$$d_1 d_2^n(xa y) = d_1 \left(\sum_{i=0}^n {n \choose i} d_2^i(x) a d_2^{n-i}(y) \right) = 0$$
 (1)

Replacing x, y by $d_2^{n-1}(x)$, $d_2^n(y)$ in (1) we have

$$d_1\left(\sum_{i=0}^n \binom{n}{i} d_2^{n+i-1}(x) a d_2^{2n-i}(y)\right) = d_1\left(d_2^{n-1}(x) a d_2^{2n}(y)\right) = 0$$

Replacing x, y by $d_2^{n-2}(x)$, $d_2^{n+1}(y)$ in (1) and using above result we get $d_1(d_2^{n-2}(x)ad_2^{2n+1}(y)) = 0$. Continuing this argument we finally reach the identity $d_1(x)ad_2^{3n-1}(y) = 0$ for any $x \in J$, $y \in R$, $a \in \Gamma$

By Lemma 6, either $d_1(J) = 0$ or $d_2^{3n-1}(R) = 0$. From $d_1(J) = 0$ it follows that for any $x \in J$, $y \in R$, $a \in \Gamma$ $d_1(xay) = 0$ i.e. $d_1(xay) = d_1(x)ay + xad_1(y) = xad_1(y) = 0$. Since R is a prime Γ -ring, hence $d_1(y) = 0$, for all $y \in R$. This completes the proof.

This theorem give a generalization of Posner's theorem.

Acknowledgements: The author wishes to thank Prof. Xie Bangjie and Prof. Niu Fengwen for their advice and encouragement.

References

- [1] W. E. Coppage and J. Luh, Rabicals of gamma rings, J. Math. Soc. Japan, Vol.23, No.1, 1971, 42-52.
- [2] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.