Journal of Mathematical Research & Exposition, Vol.12, No.2, May 1992

The Approximation of Continuous Function by Kantorovitch Operator and Its Transformation Operator *

Ye Nanfa (Zhangzhou Teachers' College, Fujian)

Kantorovitch polynomials operator is the following extension of Bernstein polynomials operator

$$K_n[f(t):x] = (n-1)\sum_{k=0}^n \left(\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t)dt\right)C_n^k x^k (1-x)^{n-k}.$$

Transformation operator or $K_u[f(t):x]$ is defined by

$$\overline{k}_n[f(t):x] = \sum_{k=0}^n C_n^k x^k (1-x)^{n-k} \frac{1}{2} [f(\frac{k}{n-1})^{n-k} + f(\frac{k+1}{n+1})]$$

According to [2], for any $f(x) \in C_{[0,1]}$ then

$$|K_n[f(t):x]-f(x)| \leq \frac{5}{4}\omega(f,\frac{1}{\sqrt{n+1}}),$$
 (1)

$$|\overline{k}_n[f(t):x]-f(x)| \leq \frac{5}{4}\omega(f,\frac{1}{\sqrt{n+1}}), \tag{2}$$

where $\omega(f,\cdot)$ is the modulus of continuity of function f(x).

Lemma 1 i) The following identity holds

$$L_{n}(x) = \sum_{k=0}^{n} [(5k^{4} + 10k^{3} + 10k^{2} + 5k + 1)$$

$$- (20k^{3} + 30k^{2} + 20k + 5)(n+1)x + (30k^{2} + 30k + 10)(n+1)^{2}x^{2}$$

$$- (20k+10)(n+1)^{3}x^{3} + 5(n+1)^{4}x^{4}]C_{n}^{k}x^{k}(1-x)^{n-k}$$

$$= 5nx(1-x)[20x^{2} - 20x + 5 + 3nx(1-x)] + (1-x)^{5} + x^{5};$$

ii)
$$L_n(x) \leq \frac{15}{16}(n+1)^2$$
 (when $n > 6$, $x \in [0,1]$).

Lemma 2 i) The following identity holds

$$\sigma_n(x) = \sum_{k=0}^n [(n+1)x - k]^4 C_n^k x^k (1-x)^{n-k}$$

= $nx(1-x)[20x^2 - 10x + 1 + 3nx(1-x)] + x^4;$

^{*}Received Jun. 23. 1990.

ii) $\sigma_n(x) \leq \frac{25}{128}(n+1)^2$ (when n > 17, $x \in [0,1]$).

i) The follwoing identity holds Lemma 3

$$\overline{\sigma}_n(x) = \sum_{k=0}^n [(n+1)x - (k+1)]^4 C_n^k x^k (1-x)^{n-k}$$

$$= nx(1-x)[20x^2 - 30x + 11 + 3nx(1-x)] + (1-x)^4;$$

ii) $\overline{\sigma}_n(x) \leq \frac{7}{32}(n+1)^2$ (when n > 15, $x \in [0,1]$). By virtue of Lemmas, we show that (1) and (2) can be improved as the following results:

For any $f(x) \in C_{[0,1]}$ the following approximation holds when n > 6Theorom 1

$$\mid K_n[f(t);x]-f(x)\mid \leq \frac{19}{16}\omega(f,\frac{1}{\sqrt{n+1}}).$$

Theorem 2 For any $f(x) \in C_{[0,1]}$ then

$$|\overline{K}_n[f(t);x] - f(x)| \le \frac{309}{256}\omega(f,\frac{1}{\sqrt{n+1}})$$
 (when $n > 17$).

References

- [1] Wang R.H., Approximation of Unbouded Function. Science Rublishing House, China, 1983, in Chinese.
- [2] Lee Ween-ching, Xiamen University Journal (Natural Science Edition), 1(1962), 71-73.