Journal of Mathematical Research & Exposition, Vol.12, No.3, Aug. 1992

Global Pinching Theorems of Submanifolds with Constant Mean Curvature in the Sphere*

Sun Huafei

(Dept. of Math., Northeast University of Technology, Shenyang, China)

Cui Yuheng

(Dept. of Math., Liaoning University, Shenyang, China)

Let $S^{n+p}(1)$ be a (n+p)-dimensional unit sphere. We prove the following results.

Theorem 1 Let $M^n(n > 2)$ be a compact oriented n-dimensional submanifold with parallel mean curvature vector in $S^{n+p}(1)(p > 1)$, Ricci curvature of $M^n > (n-1)c$, $0 < c \le 1$ (c is a constant). Then there is a constant A(n,c,H), such that if

$$\|\sigma\|_{\frac{n}{2}} < A(n,c,H),$$

then Mⁿ is a totally umbilical submanifold. Where

$$A(n,c,H) = \min \left\{ \left[\frac{n-2}{2(n-1)} \right]^2 \frac{2^{-\frac{n+6}{n}}}{1+\sqrt{n-1}} \left[\frac{[\alpha(n)]^2}{\alpha(n-1)} \frac{n^{n+1}c^{n(n+1)/2}}{[\pi^2(1+H^2)]^{n(n+1)/2}} \right]^{\frac{2}{n}}, \frac{n}{1+\sqrt{n-1}} [\alpha(n)]^{\frac{2}{n}} 2^{-\left[\frac{n+4}{n}+\varepsilon(n)\right]} \right\}.$$

Theorem 2 Let M^2 be a compact oriented 2-dimensional submanifold with parallel mean curvature vector in $S^{2+p}(p>2)$, Gauss curvature of $M^2>c, 0< c\leq 1$ (c is a constant). If

$$\|\sigma\|_2 < \frac{2c^{7/2}}{\pi^{11/2}(1+H^2)^3},$$

then M^2 is a totally umbilical submanifold.

Where σ and H denote the square of the length of the second fundamental form of M^n and the mean curvature of M^n respectively. $\alpha(n)$ is the volume of n-dimensional unit

sphere in
$$R^{n+1} \cdot \|\sigma\|_k = (\int \sigma^k dv)^{\frac{1}{k}}, \varepsilon(n) = \begin{cases} 1 & n=3\\ (n-4)(n-2)/2 & n>3. \end{cases}$$

^{*}Received Nov. 16, 1990.