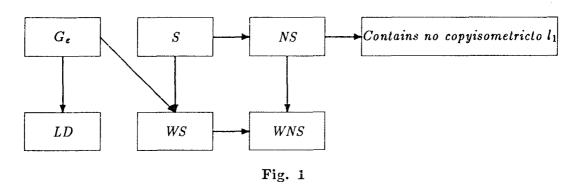
Sum Property, Normal Structure and LD Property of Orlicz Sequence Spaces*

Wang Tingfu Wang Baoxiang
(Dept. of Appl. Math., Harbin Univ. of Sci. & Tech., Harbin, China)

It is well known that (weakly) normal structure, (weak) sum-property, LD property and G_{ϵ} property are the fundamental tools in fixed points theory of nonexpansive mappings. Let X be a Banach space, $(x_n)_{n\in\mathbb{N}}$ be a bounded sequence of X. If for any point X belonging to the convex hull $\operatorname{covx}((x_n)_{n\in\mathbb{N}})$ of $(x_n)_{n\in\mathbb{N}}$, there holds

$$\overline{\lim}_n \sup ||x_n - x|| = \underline{\lim}_n \inf_n ||x_n - x|| \stackrel{\triangle}{=} \wedge (x),$$

where $\wedge(\cdot)$ is an affine functional defined on $\operatorname{covx}((x_n)_{n\in\mathbb{N}})$, we call $(x_n)_{n\in\mathbb{N}}$ to be a limit-affine sequence. In particular, if $\wedge(\cdot)$ is a constant number on $\operatorname{covx}((x_n)_{n\in\mathbb{N}})$, we call $(x_n)_{n\in\mathbb{N}}$ to be a limit-constant sequence. Moreover, X is said to have (weak) sumproperty if X contains no (weakly convergent) limit-affine sequence which $(\wedge x_n)_{n\in\mathbb{N}}$ is nondecreasing. X is said to have (weakly) normal structure if it contains no (weakly convergent) limit-constant sequence. X is said to have G_{ε} property if for any $\varepsilon, 0 < \varepsilon < 1$, there exists r > 0 such that ||x|| = 1, $||y|| \ge \varepsilon$ and x, y have the support sets disjoint to each other implies $||x+y|| \ge 1+r$. X is said to have Lami-Dozo property if any bounded sequence $(x_n)_{n\in\mathbb{N}}$ of X has a subsequence which is pointwise and almost convergent. We call that $(x_n)_{n\in\mathbb{N}}$ is almost convergent to x if for any $y \ne x$, $\overline{\lim}_n \sup_n ||x_n-x|| < \overline{\lim}_n \inf_n ||x_n-y||$. The relations among these concepts are as shown in the following figure:



^{*}Received March 23, 1990. Project supported by NSFC.

On Orlicz space $l_{(M)}$, endowed with Luxemburg norm, if M(u) is restricted to be N-function, then every property listed above is equivalent to that M(u) satisfies Δ_2 -condition at 0. We discuss Orlicz sequence space l_M endowed with Orlicz norm. Both the results and the proof methods are quite different. Let M(u), N(v) be a pair of complementary N-functions. We call that $[u, \bar{u}]$ is an affine interval of M(u) if $M'(\tilde{u})$ equals to a constant for $\tilde{u} \in [u, \bar{u}]$.

Theorem 1 The following are equivalent

- (1) l_M has sum-property,
- (2) l_M has normal structure,
- (3) There exists c > 0 such that for any affine interval $[u, \bar{u}]$ of M(u) containing in $[0, N'(N^{-1}(1))], \ \bar{u} \leq cu$.

Theorem 2 l_M has weak sum-property.

Corollary 1 l_M has weakly normal structure.

Corollary 2 l_M has the fixed point property.

Theorem 3 The following are equivalent

- (1) l_M has G_{ϵ} property,
- (2) l_M has LD property,
- (3) M(u) satisfies Δ_2 -condition at 0.

Remark l_M contains no subspace isometric to l_1 .