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The definition of absolute continuity was introduced by Vitali in {5] in which he es-
tablished the classical relationship between absolute continuity and the integral. Due to
this relationship with the integral, much of the work with absolute continuity has dealt
with finctions of intervals [4] and additive set functions {2]. Even so, there has been some
interest in extending the classical notion of absolute continuity to abstract spaces. Ma [3]
introduced the notions of absolute continuity and weak absolute continuity for functions
defined on an interval of real numbers into a normed vector space, and Alexiewicz [1]
introduced the notion of strong absolute continuity for the same type of functions.

In this paper, we consider definitions which extend strong absolute continuity and
absolute continuity to functions in arbitrary topological vector spaces and weak absolute
continuity to functions in locally convex spaces. We give characterizations of the func-
tios which satisfy each of these definitions and we consider the relationship between the
definitions. With these defintions we generalize some of the results in [3].

We use the following natation. The symbol I denotes a closed interval of real numbers
and F denotes either the real or complex numbers. Unless stated to the contrary, a space
X is understood to be a topological vector space over F whose topology is Hausdorff. If
G is a subset of either X or X', G° denotes the polar of G taken with respect to the
duality (X, X"). A subfamily Y of a family 7 of sets is called fundamental (in 7) if every
member of 7 is contained in a suitable member of . We abbreviate “neighborhood of 0”
as “0—nbhd”. ‘

2. Strong Absolute Continuity

For convenience S(R*) is used to denote the collection of all finite subsets {A;} of
positive real numbers for which >~ A; < 1.

Definition 2.1 A function f defined on I into X s said to be strongly absolutely
continuous if to each O0—nbhd U in X there corresponds § > O such that for each finite
collection {(z;,y;)} of disjoint open subintervals of I with 3 (yi — x;) < & there erists
{)\;} € S(RY) such that for each 1, f(y:) — f(z:) € MU.

Definition 2.2 A family Y of functions defined on I into X is called equi-strongly
absolutely continuous if for each O—nbhd U in X there corresponds a § > 0 such that if
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The proof of the following theorem is analogous to the proof of 2.3 and so is stated
without proof.

Theorem 3.3 Let f be defined on I into a locally convez space X. If there exists a
fundamental family Y of equi-continuous subsets of X' such that for each G € Y there
exists a weakly dense subset D of G for which {gf : g € D} i3 equi-absolutely continuous,
then f is absolutely continuous.

Theorem 3 of (3] follows as a corollary to this result.

Corollary 3.4 Let f be defined on I into a normed space X and let B = {g € X' 3|
9 IS 1}. If f is absolutely continuous, then {gf : g € B} is equi-absolutely continuous.
Conversely, if there exists a weakly dense subset D of B such that {gf : g € D} is equi-
absolutely continuous, then f is absolutely continuous.

We conclude this section with an example which shows that an absolutely continuous
function need not be strongly absolutely continuous.

Example 3.5 For each n = 1,2,--, define g, : I — R by g"(a;) =+/z— ilzns’(l/n) <
z < 1, and g,(z) = 0 otherwise. If Y = {g,,}, we assert that Y is equi-absolutely continuous
but not equi-strongly absolutely continuous. _

We first show that Y is equi-absolutely continuous. Let € > 0 be given. Since f(z) =
VZ is absolutely continuous on I, there exists § > 0 such that for each finite collection
{(=;, %)} of disjoint open subintervals of I with Y (y; — z;) < &, we have | Y (f(w) -
f(z:))] < e. We must also have for each n, | ¥ (gn(%:) — gn(zi))| < €; for suppose that
there exists a k and a finite collection {(u;,v;)} of disjoint open subintervals of I such that
2(vi — w;) < 6 while | 2 (gk(vi) — gx(wi))| > €. We may suppose that each u; > (1/k). if
we let t; = v; — (1/k) and s; = u; — (1/k), then {(s4,%;)} is a finite collection of disjoint
open subintervals of I such that } (¢ —s;) < 8. Since f(s;) = gi(us) and f(:) = gr(vs) for
each 1, we have for this collection | >>(f(2:) — f(si))| > €, which is contrary to the choice
of §. Thus, Y is equi-absolutely continuous on I.

Let us now suppose that U is equi-strongly absolutely continuous. Let ¢ > O be
given and let §,0 < § < (1/2), correspond to U = (—¢,¢€) in the definition of the equi-
‘strong absolute continuity of Y on I. Select m so that § }.7%,(1/(¢ + 1)) > €. For each
i=12,---,m set z; = (1/(i + 1)) — (6/(+ + 1))? and y; = (1/(¢ + 1)) + (6/(¢ + 1))*.
Then {(z;,¥:)} is a collection of disjoint open subintervals of I for which 3 (yi — z:) < 6.
Therefore, there must exist a set {);} = S(R') such that for each n, g.(y:) — gn(z:) € AU
Thus, (6/({ + 1)) = gi+1(%) — gi+1(z:) € \U, which implies that §/(+ + 1) < Aje. We
must then have § 5%, (1/( + 1)) < ¢, which is impossible. Hence, 7P is not equi-strongly
absolutely continuous on I.

Now, let ¢ denote the space of convergent sequences of real numbers, and define g :
I — ¢ by z — (gn(z)). For each n, let f, € ¢' =1 be the map defined by f.({yi)) = ¥n;
then fn,g = gy, for each n. Since {f,g} is not equi-strongly absolutely continuous, it follows
from 2.4 that ¢ is not strongly absolutely continuous. On the other hand, g is absolutely
continuous. To see this, let D denote the collection of all finite sums }; A; fp; for which
> |A] € 1. D is weakly dense (in fact, strongly dense) in the unit ball of I;. Let € > 0
be given and use the equi- absolute continuity of Y to find § > 0 which corresponds to




U = (—¢,€). Given h = 3; Aifn, € D, then for each finite collection {(z;,y;)} of disjoint
open subintervals of I such that 3°;(y; — z;) < &, we have

|Z(h9(%‘) — hg(z:))| = iZZ)\jfn,-(g(yi) - 9(z:))]
S Z 1Al Zfﬂj(g(yi) —a(z:))] < Z |Ajle < e

Hence, {hg : h € D} is equi-absolutely continuous. We may now use 3.4 to conclude that
¢ is absolutely continuous.

4. Weak Absolute Continuity

Definition 4.1 A function f defined on I into a locally convez space X 1is called weakly
ebsolutely continuous if for each h € X', hf is absolutely continuous.

It is immediate that every absolutely continuous function is also weakly absolutely
continuous. An example is given in [3] which shows that a weakly absolutely function
need not be absolutely continuous.

Our next result extends Theorem 1 of [3] to functions'in locally convex spaces.

Theorem 4.2 Let X be a locally convex space and let [ be defined on I tnto X. Let H be
an absorbing subset of X', and let G denote the collection of all sums 3 (f(y;)— f(z:i)) such
that {(z:,y:)} 15 a finite collection of disjoint open subintervals of I for which 3 (yi — =) <
1. Then f 1s weakly absolutely continuous if and only if:

(i) G is a weakly bounded subset of X, and

(i1) These exists a strongly dense subset D of H such that for each h € D, hf is absolutely
continuous on I.

Proof If f is weakly absolutely continuous, then (ii) is evidently necessary. To show
that (i) is also necessary, let A € X' and let § > O correspond to 1 in the defintion of the
absolute continuity of Af. Let mg be a positive integer for which mg > (4/6). Then for
each finite collection of disjoint open subintervals {(z;,y;)} of I such that 3} (y: — z;) < 1,
there exist m collections of disjoint open subintervals {(u; ,v;;) : 1 < j < n;} of I with
the following properties:

(2) For each 4,3 (vi; — u;;) < 6.

(3) ¥, 2;(f(vi;) ~ f(w,)) = Ze(f(uk) — f(z)). Thus, for any finite collection of
disjoint open subintervals {(z;,yi)} of I with 3" (y; — z;) < 1, we have

IR () = Szl < 2R (v) = T3] € m < mo.

Hence, sup{h(z)| : z € G} < my, and, since h is arbitrary, it follows that G is weakly
bounded.



Conversely, suppose the condition is satisfied and let K denote the circled hull of G.
Then, given h € H and € > 0, there exists g € (h+ (¢/2K°) N D. Since g € D, there exists
8,0 < § < 1, which corresponds to €¢/2 in the definition of the absolute continuity of gf. If
{(z:, %)} is a finite collection of disjoint subintervals of I such that Y (v — z;) < §, then

1> Rh(f(w) - f(z))]
<|(h=9)O_ fw) — fl@))+1D_ a(Ff(w) — f(=))]
< (¢/2) +(e/2) = .

Thus, hf is absolutely continuous. Since H is absorbing, we can conclude that gf is
absolutely continuous for each g € X' which completes the proof.
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