A Note on Stochastic Ordering $(\leq_d)^*$

Hu Nanhua (Dept. Math., Xiamen University,)

Abstract In discussing the convergence in probability (in distribution) of a sequence of random variables, it is often used that if for any $n, P\{X_n \leq Y_n \leq Z_n\} = 1$ and $X_n \stackrel{P(d)}{\longrightarrow} Y, Z_n \stackrel{P(d)}{\longrightarrow} Y$, then $Y_n \stackrel{P(d)}{\longrightarrow} Y$. It is shown now that the stochastic ordering condition $X_n - Y \leq_d Y_n - Y \leq_d X_n - Y(X_n \leq_d Y_n \leq_d Z_n)$ is a more general dominating condition than $P\{X_n \leq Y_n \leq Z_n\} = 1$ in ensuring the convergence in probability (in distribution) of $\{Y_n\}$.

It is well known ([1], [2], [3]) that the comparison methods of stochastic ordering have been widely used in the fields of queueing theory, reliability and stochastic point processes. It is shown now that even in a primary subject of probability theory – convergence in probability (in distribution), the stochastic ordering (\leq_d) still has its particular "dominating power".

Definition 1^[1] Let X and Y be two random variables on a probability space (Ω, \mathcal{F}, P) , F_x and F_y their respective distribution functions. It is called that according to the stochastic ordering (\leq_d) , random variable X is "smaller" than Y if $P\{X \leq a\} = F_x(a) \geq F_y(a) = P\{Y \leq a\}$ for any real number a. In this case we write $X \leq_d Y$ or $F_x \leq_d F_y$.

Similarly to the comparison test of the convergences of series and sequence in mathematical analysis, when discussing the convergence of a sequence of random variables in probability theory, we have the following

Proposition 2 Let $\{X_n\}$, $\{Y_n\}$ and $\{Z_n\}$ be sequences of random variables on (Ω, \mathcal{F}, P) . If for any $n, P\{X_n \leq Y_n \leq Z_n\} = 1$ and $X_n \stackrel{P(d)}{\to} Y, Z_n \stackrel{P(d)}{\to} Y$, then $Y_n \stackrel{P(d)}{\to} Y$.

Obviously, we need only to consider the case of Y = 0 when proving this proposition in the case of convergence in probability.

After introducing the concept of \leq_d , we find that the condition $P\{X_n \leq Y_n \leq Z_n\} = 1$ may be generalized to $X_n \leq_d Y_n \leq_d Z_n$ in getting the conclusion of Proposition 2. For this purpose, we need the following two propositions and one theorem.

Proposition 3 Let X and Y be two random variables on (Ω, \mathcal{F}, P) . If $P\{X \leq Y\} = 1$, then $X \leq_d Y$. The inverse is not true.

^{*}Received Oct. 26, 1990. This project is supported by the National Natural Science Foundation.

Proof If $P\{X \le Y\} = 1$, then for any real number a, we have

$$F_x(a) = P\{X \leq a\} \geq P\{Y \leq a\} = F_y(a).$$

It is just $X \leq_d Y$. On the other hand, let $(\Omega, \mathcal{F}, P) = ((0, 1], \beta(0, 1], \mu(0, 1])$, where $\mu(0, 1]$ is the Lebesgue measure on (0, 1]. For k = 0, 1, 2, ..., let $X(\omega) = -k$ if $\omega \in ((1/2)^{k+1}, (1/2)^k], Y(\omega) = k - 1$ if $\omega \in ((2/3)^{k+1}, (2/3)^k]$. Then for any real number a,

$$F_y(a) = 0 < F_x(a),$$
 $a < -1,$ $F_y(a) = 1/3 < 1/2 = F_x(a),$ if $-1 \le a < 0$, i.e. $X \le_d Y$, $F_y(a) < 1 = F_x(a),$ $a \ge 0$,

but
$$P\{X \le Y\} = \mu(0, 2/3] = 2/3 < 1$$
.

Proposition 4 Let $\{X_n\}, \{Y_n\}$, and $\{Z_n\}$ be three sequences of random varibales on (Ω, \mathcal{F}, P) . If for any $n, X_n \leq dY_n \leq dZ_n$ and $X_n \stackrel{P}{\to} 0, Z_n \stackrel{P}{\to} 0$, then $Y_n \stackrel{P}{\to} 0$.

Proof For any positive number ε , from

$$P\{|Y_n| \ge \varepsilon\} = P\{Y_n \ge \varepsilon\} + P\{Y_n \le -\varepsilon\} \le P\{Y_n > \varepsilon/2\} + P\{Y_n \le -\varepsilon\}$$

$$\le P\{X_n > \varepsilon/2\} + P\{Z_n \le -\varepsilon\} \le P\{|X_n| \ge \varepsilon/2\} + P\{|Z_n| \ge \varepsilon\},$$

and $X_n \stackrel{P}{\to} 0, Z_n \stackrel{P}{\to} 0$, we obtain the conclusion.

Theorem 5 Let $\{X_n\}, \{Y_n\}$ and $\{Z_n\}$ be three sequences of random variables and Y a random variable on (Ω, \mathcal{F}, P) . If $X_n \stackrel{d}{\to} Y, Z_n \stackrel{d}{\to} Y$, and $X_n \leq_d Y_n \leq_d Z_n$ for any n, then $Y_n \stackrel{d}{\to} Y$.

Proof Let the distribution functions of X_n, Y_n, Z_n and Y be F_n, G_n, H_n and G, respectively, C the continuity set of G and x_0 any fixed point in C. After taking any a in C such that $a > x_0$, we have

$$P\{Y_n \le x_0\} \le P\{Y_n \le a\} \le P\{X_n \le a\} \text{ or } G_n(x_0) \le F_n(a).$$

Therefore

$$\overline{\lim}G_n(x_0) \leq \overline{\lim}F_n(a) = G(a). \tag{1}$$

Because x_0 is in C, we have $\overline{\lim}G_n(x_0) \leq G(x_0)$ while a, in (1), strictly decreases and converges to x_0 .

Similarly,
$$\underline{\lim}G_n(x_0) \geq G(x_0)$$
, and $\underline{\lim}G_n(x_0) = G(x_0)$.

Theorem 6 Let $\{X_n\}$, $\{Y_n\}$ and $\{Z_n\}$ be three sequences of random variables and Y a random variable on (Ω, \mathcal{F}, P) . If for any $n, X_n - Y \leq_d Y_n - Y \leq_d Z_n - Y$ and $X_n \stackrel{P}{\to} Y$, then $Y_n \stackrel{P}{\to} Y$.

Besides this, from the reflectivity of stochastic ordering, we can get another equivalent definition of the convergence in probability (in distribution).

Corollary 7 Let $\{Y_n\}$ be a sequence of random variables on (Ω, \mathcal{F}, P) . The necessary and sufficient condition for $Y_n \stackrel{P(d)}{\to} Y$ is that there exist two sequences of random variables $\{X_n\}, \{Z_n\}$, such that $X_n \stackrel{P(d)}{\to} Y, Z_n \stackrel{P(d)}{\to} Y$, and $X_n - Y \leq_d Y_n - Y \leq_d Z_n - Y(X_n \leq_d Y_n \leq_d Z_n)$ for any n.

Proof The necessity follows at once after taking $X_n = Z_n = Y_n$.

References

- [1] D. Stoyan, Comparison Methods for Queues and other Stochastic Models, Wiley, New York, 1983.
- [2] R.E. Barlow and F. Proschan, Mathematical Theory of Reliability, Wiley, New York, 1965.
- [3] Y.L. Deng, On the comparison of point processes, J. Appl. Prob., 22(1985), 300-313.

关于随机序的一个注记

胡南桦

(厦门大学数学系,361005)

摘 要

本文引入随机序(≤、)的概念,说明在讨论随机变量列的依概率(依分布)收敛问题时,它是一个颇为恰当的"控制尺度".