Global Approximation Theorems for Modified Szász Operators in Exponential Weight Spaces *

Guo Shunsheng
(Dept. Math., Hebei Normal University)

Let $M_n(f, x)$ be the well known Szász operators, i.e.

$$M_n(f,x)=\sum_{k=0}^{\infty}e^{-nx}\frac{(nx)^k}{k!}f(\frac{k}{n}).$$

We propose modified Szász operators as follows

$$L_n(f,x) = \sum_{k=0}^{\infty} S_{n,k+1}(x) n \int_0^{\infty} f(t) S_{n,k}(t) dt + f(0) S_{n,0}(x), \tag{1}$$

where

$$S_{n,k}(x) = e^{-nx}(nx)^k/k!.$$

The object of this paper is to study global approximation for operator (1) for continuous functions on $[0, \infty)$ with oexponential growth.

Using some simple calculations one may verify the following

$$L_n(1,x) = 1,$$

 $L_n((t-x),x) = 0,$
 $L_n((t-x)^2,x) = \frac{2x}{n}.$

Let us introduce the usual notations. Supose

$$C_A = \{f \in C(0,\infty), f(x) = O(e^{Ax}) \mid x \to \infty\}.$$

If $f \in C_A$ we define that $||f||_A = \sup_{x \ge 0} e^{-Ax} |f(x)|$. The corresponding Lipschitz classes are given for $0 < \alpha \le 2$ by (h > 0)

$$egin{aligned} \Delta_h^2 f(x) &= f(x+2h) - 2f(x+h) + f(x), \ \omega_A^2(f,\delta) &= \sup_{0 < h \leq \delta} \|\Delta_h^2 f\|_A, \ \operatorname{Lip}_A^2 lpha &= \{ f \in C_A, \omega_A^2(f,\delta) = O(\delta^lpha) \mid \delta o 0 + \}. \end{aligned}$$

^{*}Received Dec. 25, 1990.

In this paper we will give a necessary and sufficient condition on the rate of convergence of $L_n(f,x)$ to f(x) for $f(x) \in \text{Lip}_A^2 \alpha, 0 < \alpha < 2$. The main result is given by the following theorem.

Theorem If $f \in C_A$ then for $0 < \alpha < 2$ the following are equivalent

(1)
$$e^{-Ax}|L_n(f,x)-f(x)| \leq M(\frac{x}{n})^{\alpha/2} \text{ for } n \geq 2A+x;$$

$$(2) f \in \mathrm{Lip}_A^2 \alpha.$$

As well as in [1] [3] the method of the proof is the elementry one that was introduced by Berens and Lorentz [2]. Throughout, M is used to denote a positive constant that depends on A, but independently of n and x, and it may represent different values at different occurrences.

Lemma 1 For $x \ge 0$, $n \ge 2A + x$, we have

$$L_n(e^{At}, x) \leq Me^{At},$$

 $L_n(e^{At}(t-x)^2, x) \leq Me^{At}\frac{x}{n}.$

Lemma 2 If $f \in C_A^2 = \{f \in C_A, f', f'' \in C_A\}$ then for $n \geq 2A + x$ we have

$$e^{-Ax}|L_n(f,x)| \leq M\frac{x}{n}||f||_A.$$

Lemma 3 If $f \in C_A$ for $x \ge 0, n \ge 2A + x$ we have

$$|e^{-Ax}|L_n''(f,x)| \leq Mn^2||f||_A$$

Lemma 4 If $f \in C_A$ for x > 0 and $n \ge 2A + x$ we have

$$e^{-Ax}|L_n''f(x)|\leq M\frac{n}{x}||f''||_A.$$

Lemma 5 If $f \in C_A^2$ for $n \ge 2A + x$ we have

$$e^{-Ax}|L_n''(f,x)|\leq M||f''||_A.$$

Theorem 1 If $f \in C_A$, $x \ge 0$ then there holds for $n \ge 2A + x$

$$e^{-Ax}|L_n(f,x)-f(x)|\leq M\omega_A^2(f,\sqrt{x/n}).$$
 (2)

In particular, if $f \in \operatorname{Lip}_A^2 \alpha$ for some $\alpha \in (0,2]$ then

$$e^{-Ax}|L_n(f,x)-f(x)|\leq M(\frac{x}{n})^{\alpha/2}.$$
 (3)

Proof To prove Theorem 1 we introduce the (modified) Steklow means (cf [1]) for h > 0 by

$$f_h(x) = (\frac{2}{h})^2 \int_0^{\frac{h}{2}} \int_0^{\frac{h}{2}} [2f(x+s+t) - f(x+2(s+t))] ds dt.$$

One has

$$f(x) - f_h(x) = (\frac{2}{h})^2 \int_0^{\frac{h}{2}} \int_0^{\frac{h}{2}} \Delta_{s+t}^2 f(x) ds dt,$$

 $f''_h(x) = h^{-2} [8\Delta_{\frac{h}{2}}^2 f(x) - \Delta_h^2 f(x),$

and hence

$$||f - f_h||_A \le \omega_A^2(f, h), \quad ||f_h''||_A \le 9h^{-2}\omega_A^2(f, h).$$
 (4)

Note that for x = 0 the assertion is trivial. For $f \in C_A$, h > 0 one has by Lemma 1, 2 and (4) for $n \ge 2A + x$ that

$$|e^{-Ax}|L_n(f,x)-f(x)| \leq M\omega_A^2(f,h)[1+h^{-2}\frac{x}{n}].$$

So that (2) thereby (3) follows upon setting $h = \sqrt{x/n}$.

Theorem 2 If $f \in C_A$ satisfies for some $\alpha \in (0,2)$ and $x \ge 0, n \ge 2A + x$

$$e^{-Ax}|L_n(f,x)-f(x)|\leq M(\frac{x}{n})^{\alpha/2}, \qquad (5)$$

then

$$f \in \operatorname{Lip}_A^2 \alpha.$$
 (6)

Proof First we have from (5) for $h \le 1, x \ge 0, n \ge 2A + x$

$$e^{-Ax}|f(x)-2f(x+h)+f(x+2h)|$$

$$\leq M(\frac{x+2h}{n})^{\alpha/2} + e^{-Ax} \int_0^h \int_0^h |L_n''(f-f_\delta,x+s+t)| ds dt$$

$$+e^{-Ax}\int_0^h\int_0^h|L_n''(f_{\delta},x+s+t)|dsdt=J_1+J_2+J_3.$$
 (7)

We write

$$J_1 = M(\frac{x+2h}{n})^{-\alpha/2} \le M[\max(\frac{1}{n^2}, \frac{x+2h}{n})]^{\alpha/2}.$$
 (8)

Using Lemma 5 and (4) for $x \ge 0$, $n \ge 2A + x$ one has

$$J_3 \le M \frac{h^2}{\delta^2} \omega_A^2(f, \delta). \tag{9}$$

Note that (see [1] Lemma 10)

$$\int_0^h \int_0^h \frac{1}{x+s+t} ds dt \frac{Mh^2}{x+2h},$$

and using Lemma 4 and (4) we have for $x > 0, n \ge 2A + x$

$$J_{2} \leq Me^{-Ax}e^{Ax+2h}||f-f_{\delta}||_{A}n\int_{0}^{h}\int_{0}^{h}\frac{1}{x+s+t}dsdt \leq M\frac{n}{x+2h}h^{2}\omega_{A}^{2}(f,\delta).$$
 (10)

For the case x = 0 since the existence of the integrals for x = 0 and the continuity of the expressins involved the estimate (10) holds true. Using Lemma 3 for $x \ge 0$, $n \ge 2A + x$, we have

$$J_2 \leq Mn^2h^2\omega_A^2(f,\delta).$$

Therefore

$$J_2 \leq Mh^2\omega_A^2(f,\delta)\min(n^2,\frac{n}{x+2h}). \tag{11}$$

Let $\delta_{n,x}^2 = \max\{1/n^2, (x+2h)/n\}$. Then $\delta_{n+1,x} > \frac{3}{4}\delta_{n,x}$ for $n \geq 4$ and for every $\delta < \min\{\frac{1}{4A}, \frac{1}{4}\}$ and every x, n can be chosen such that (see [3] p.260)

$$\frac{3}{4}\delta_{n,x} < \delta < \delta_{n,x},\tag{12}$$

and so $n \geq 2A + x$.

Hence from (7)-(12) we get

$$e^{-Ax}|f(x) - 2f(x+h) + f(x+2h)|M[\delta_{n,x}^{\alpha} + \omega_A^2(f,\delta)\left(\frac{h^2}{\delta_{n,x}^2} + \frac{h^2}{\delta^2}\right)]$$

$$\leq M[\delta^{\alpha} + (\frac{h}{\delta})^2 \omega_A^2(f,\delta)]. \tag{13}$$
For the proof of Theorem 2, (13) is sufficient (cf. [1] [3]).

References

- [1] M. Becker, Global approximation theorem for Szász- Mirakjan and Baskakov operators in polynomial weight spaces, Incdiana Univ. Math. J. Vol. 27(1987) 127-142.
- [2] H. Berens and G.G. Lorentz, Inverse theorems for Bernstain polynomials, Indiana Univ. Math. J. 21(1972) 693-708.
- [3] Z. Ditzian, On global inverse theorems of Szász and Baskakov operators, Can. J. Math. 31(1979) 255-263.

修正 Szász 算子在指数权空间的整体逼近

郭顺生

(河北师范大学数学系,石家庄 050016)

擅 要

本文给出用修正 Szász 算子的逼近度刻画指数权空间中类 Lip ¾ 的一个特征.

— 72 —