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Abstract In this paper, we consider the truncated regression model. A new method of
estimating the regression parameters based on truncted data is given. The residual distri-
bution is allowed to be unspecified. Using the conclusions on nonparametric estimation
of error distributions in our work early, we obtain consistency of the estimation under
some regular conditions. An example is used to show that our results is an improvement
of Heckman’s work (1979) essentially.

§1. Introduction

Let the truncated regression model be defined as

yi:x£ﬂ+eix i:1:2:”') (1)
where ey,€z,--- iid., Ee; = 0,0 < Ee? < o0;zis(€ R) are known covariates vectors,
B(€ R) is an unknown vector of parameters. The datum (z;,y;) is observed only if z; > 0
where zq,22,--- is a sequence of the iid. random variables. Let ¢;,---,§m be observed
(m = m(n) < n).91, -, ¥m is called as the truncated data of y;,---,y, in literature.
Based on the observations §;, -+, §m, it is desired to estimate 8. Truncated regression

model is widely applied to ecnomics and social research field. Hence, a lot of scholars
studied it and obtained many interesting results. In 1958, Tobin [1] proposed M. L.E of g
under the assumption of normality. But he didn’t make any theoretical analysis. In 1973,
Amemiya [2] obtained the consistency and asympotically normality of M. L. E of 8 under
the assumption of normality. Since then, no important theoretical work has been done
about the model. For the case of unknown error distribution, Battacharya, et al (1983)
[3] gave a nonparametric estimation of 8 that involved zero of a criterion function without
representation formula for the estimators. Hence, it is inconvenient to the theoretical
analysis and application. C. F. Wu, et al (1988) [1] considered nonparametric estimation
of 3, however, no theoretical results has been given.
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In this paper, we propose a nonparametric L.S. method to estimate §. Using the
conclusions on nonparametric estimation of error distributions in our work early [5], we
obtain the consistency of the estimation under some regular conditions.

Suppose

Zi=thr+uy, i=1,2,--, (2)
where tis(€ R) are known and r(€ R) is unknown. In what follows, we shall assume the
following regular conditions

(i) e1,ez, - iid. F(z/o);uy,ug, - iid. F(z) and Eu; = 0,0 < E(u}) < oc, where #
and ¢ > 0 are both unknown;

(i1) F has a density function f, which is uniform continuous on R;

(iii)

—
o
)

—

k
E(etfur > y) = > _¢;(f(v), F(v),v)¥;, foryc R
i1

where k is a positive integer and ¢,(-,-,-)'s are known functions, ;s unknown (the

q/);s may contain the model parmeters, but are independent on y).

Ty, =y Ty
(iv) Let X! = : ySm = X! X, where

al’ LN (o 7

¢1(f(-tir), F(-tir), —tr)

ee(f(~tir), F(r‘t:r), —tlr)

and vg.;.n) is (7,7)-th entry of S;1(1 < j < p+ k), then there exists a 5, > 1 such that
o) = O((log m)*(log log m) ~*7), (1)
where the conventions i1s adopted that the first m(< n) observations on Y; are available
(1 <i<n),and m = m(n) —, as n — oo.
In §2, we shall derive the estimation method and some Lemmas. The main results will
be given in §3 and two examples are given in §4.

§2. The estimation of § and some lemmas

Let the least square estimation of r based on {t1,21},--,{tn, 2.} be #, and the residul
U = 2; — t:-f-",z' = 1,---,n. Denote the emprical distribution functions of @;,---, 4, by
F,.. Then the estimation of f(z) is defined as follows:

fn(x) = (2(1,1)“1{13‘,,(1 + a,) - ﬁ'n(x - ay)],z € R, (5)
78—
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where a,, > 0 is a window width with a,, — 0 as n — oo. Under the regular condition

(iii), we have
’ k
E(Yi|Zi > 0) = 2if + E(eilus > —tir) = zif + ) _ ¢;(f(—tir), F(=tir),—tir);.  (6)

i=1

A nature estimation of o, hence, can be difined as

¢l(fn(_t:fn)» Fn(—t:‘f")) _t:":" .
: t=1,2,...,m. (7

Gni = :
$k(fal=tir), Fa(-tifn), —tifa)
Denote
zy, by
X = : (8)
Zm> Gm mx(p+k)
and
Y = (1, 0m)s ¥ = (1,0, %) (9)
Laslty, we defined L.S. E of (8,¢) as follows
( B ) = (R X)) 1RV (10)

Next, we shall give two-fold lemmas used in the sequal.
Lemma 1 Under the regular conditions (i)-(i1i), suppose the sequence of trial points {t;}

in model (2) satisfies:
a) There exists a M > 0 such that |[t;]| < M,i=1,2,--;
n

1=1

b) (1/n)Qn — Z(> 0) as n — oo, where Qp = Z tit' and
(11)

0 < a, — 0,v/na,/(logn) — oo, as n — co.

If v, and v are random variables with v, -— v, a.s., then
(12)

fa(vn) = f(v), as..
Proof The conditions of lemma can be used to establish (see [5])

sup |fu(z) = f(z)] = 0, as.

and by the uniform continuity of f, it follows (12).

Lemma 2 Under the assumpation of Lemma 1, if the random variables v, and v satisfy
(13)

that v, — v, a.s. then
Fo(v,) — F(v),a.s.
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Proof Since
(1/m)Qn — B => nQ;* — 7 = [|Q7 1|7/ 1og Q7| = O(n™*log ),
it is well known (see Theorem 2.9 in [6]) that 7, — r, a.s. Denote the empirical distribution
function of uy,---,u, by F,, then sup|F,(z) — F(z)] — 0, a.s.
x

Without any loss of generality, we assume that u;,uz,--- and vy, vz, - - are defined on
same probability space, and denote any sample point by w. Define

A= {;n -+ r,v, — v,sup|Fn(z) — F(:l:)! — O’ as n — oo},

then fixed w € A. For simplity, we still use the notations'ﬁ‘n(z), F.(z) and #,, omitted the
dependence on w. By the definition of A, for any € > O there exists a N = N(w,¢e) > 1
such that ||f, — r|| < ¢, for n > N. Hence for n > N

n

|Fa(2) = F(z)] < (1/n) D ocus<atti(ar)

=1

)

+(1/n)

Iz t1(7—r)<u;<z)

[

=
n

< (l/n) Z I(z<u,-§z+Ms) + (l/n) Z I(z—Ms(u,-Sz)
=1

=1

>

Inl + In2-

Denote fo = sup f(z), by uniform continuity of f, we have fo < co. It is evident that
z

. z+Me
sup |F(z + Me) — F(z)| = sup/ f(s)ds < foMe
and .

supllma| = sup|Fas + Me) - Fu()

sup |F,(z + Me) — F(z + Me)|

+ sup |F(z + Me) — F(z){ + sup |F,(z) — F(z)]|
2sup |Fo(y) — F(y)| + foMe.

From the definition of A, it follows that limsupsup |I,1| < foMe. By arbitrarity of € > 0,
n z

IA

IN

it gets sup |In1| — O as n — oo, similarly sup |I,2] — O as n — oco. So we have that
x z

s:p]ﬁ'n(a:) — Fn(z)] — 0 as n — oo. (14)
Since
|Fa(va) = F(v)] < |1?“,,(v:,) = Fa(vp)| + | Fu(vn) = F(va)| + | F(vn) — F(v))|
< sup|Fu(z) = Fu(z)| +sup | Fu(z) ~ F(z)] + |F(va) = F(v)]-
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By the continuity of F and (14) it follows that F,(v,) — F(v).as n — co. Note P(4) = 1,
so (13) is obtained.

§3. Main theorem

For simplity, we discuss the case of k = 1, it is easy to extend to general case.

Theorem 1 Under the regular conditions (i), (ii), (i), the trial points {t;} in model (2)
satisfy that

a) There ezists a M > 0, such that ||t;]| < M,# =1,2---;

b) (1/n)Qn — X > 0,n — oo, where Q, = > 1. tith.
If0 < an — 0,y/nan/(logn) — oo and

é';l(i,i)—io,l.r:l,---,p—{'-l, ‘ (15)

where Sy, = )A(;nf(m,g;l(i,i) is (1,1)-th entry of é,;l. Then

<g:>—»(g)inpr. (16)

Proof Since E(e;]u; > y) is dependent on y and rk(zy, -, m) = p, hence X! X, is
nonsingular. By [5], \/n(#n — r) = Np(0,02Z7!) in dis., thus f, — r a.s., and tifp, — tir
a.s.. For any integer ¢ > 1, let X, is a ¢ X (p + 1) matrix with i-th row equal to (], &n;).
By Lemmas 1 and 2, it follows that fn(—tifn) — f(—tir) as., and F‘n(—tgr”'n) — F(—tir)
a.s.. Since ¢1(z1,z2,z3) is continuous,

G1(fa(—tifn), Fu(—tifn), —titn) — ¢1(f(~tir), F(=tir), —tir), as.
Hence &p; — o4 a.s.,1 = 1,---,q. Since (X'q)?q)'f)%;f’q is continuous in &ni,: -+, Gng

where Y is a ¢ X 1 matrix with i-th row equal to 37,-, thus

(X2 X )XY, — (X X)TIXLY, as,, (17)
xlla (23] '
where )~(q = : . |. By arbitrarity of g, it follows that
Tgs O
(X! Xm) X' Y — (X! X)) ' XY — 0, as. (18)

Similarly (X! Xm) ' — (X! Xm)™! — 0, a.s. In terms of (15), we have that (X! X))~ —
0, and hence

(X Xm) ' XY — ( ﬁ ) , in pr,
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From (18), we get
(ﬁﬁmdﬁiﬂ(i),mm

(Z:")-—»<i),inpr.

Theorem 2 Under the regular conditions (i)-(iv). The trial points {t;} in model (2)
satisfy that

a) There exists a M > 0 such ||t;|| < M,1 = 1,2

b) (1/n)Qn —+ X >0 as n — co.
If0 < a, — 0,y/na,/(logn) — co. Then

B i
()-(2)

Proof By regular condition (iv)

that is

thus, we complete the proof.

(X! X)X Y — ( 5) ) , a.S.

Using the same argument in Theorem 1, we have that

(X' X)) XY — (X! X)) )XY - 0as,
(1)-(2)

§4. Some examples

hence

Thus proof is completed.

uy ro

Example 1 Let ( °1 ) ~ Ny (( 8 ) , ( o ’f >) e} iid. ¢(z/0); {w;} iid. ¢(z)

and {(e;, u;)'}iid., where r and are unknown, ¢(z) is standard normal d.f, #(z) is density
function of ¢(z). Furthermore, we assumed that (e;,u;) has a joint density function

f(z,y). Since
Pler < zluy > y) = [¢(z/0) - P(e < z,u < y)]/(1 - ¢(y)].

Under given u; > y, e; has conditional density function

f(alu > y) = [(1/0)8(z/0) - [ f(z,)at]/(1 - $(w))
— 182 —
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and

Blahnzy) = [ ef(e/uz )

-0

- (/_+ (z/0)¢(z/0)d= —/ / (z,t)dtdz)/(1 - ®(y))
/+°°/ (z,t)dtdz = ¢(0,7)(y) + ¥s(o,m)P(y).

Yi{o,r) = /+oo(x/a)<1>(:c/¢7)dz

then
E(eiur 2 y) = (¥1(o,r) — va(o,7)8(y) — ¥s(o,r)2(y))/(1 — 2(v)).

Example 2 Let logzy,1 = 0,1,---,n iid N(u/2,1) and e; = zjiz10 — eVl ey =
(z1i/z10) — e. Then {e1;} iid. F(z/e*) and {es} iid. F(z), where F(z — €) is logarithm
normal d.f. with parametric (0,2) and f(z — ¢) is density of F(z —€). Denote ¢ = e¥, then
(e1i,€2) has a joint density

f(z,y) = exp{~(1/4)((log(z + €7) — 1) + (log(y + €))*}/(47(z + ea)(y + e)).

Under the condition of given eg; > y, e1; has conditional expectation

E(exlez > y) = ($1(9) — ¥2(0) F(y))/(1 = F(y)).

From example 2, we can conclude that the regular condition (iii) is also satisfied for
non-normal distributions. So our results improve [2] essentially. However, the condition
(i) can be weaken, it is still an open problem.
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