Journal of Mathematical Research & Exposition
Vol.13, No.2, May 1993

Multiple Subharmonic Solutions of Nonautonomous
Hamiltonian System"*

Yang Jiazin  Zheng Yu Li Zhuang
(Dalian University of Technology) (Dalian University)

Abstract By means of Z,-index and its pseudo-index, we study the existence of
multiple subharmonic solutions with prescribed minimal period for nonautonomous su-
perquadratic Hamiltonian system Jz = H,(z(t),t), 2(0) = 2(27p) where H(z,t+ 27p) =
H(z,t),t € R,z € R?N. Under hypotheses H1-H4, there are at least kN distinct soultions
with minimal period 2rp.

§1. Introduction

In this paper, we establish a multiplicity result of the following nonautonomous su-
perquadratic Hamiltonian system with minimal period 27p for any integer p > 1, that
is

(1) Jz= H,(2(t),t), 2(0)= 2(27p)

where z € R¥™, H(z,t + 27p) = H(z,t),Vz € R*, with the following hypotheses on H:
(H1) H(-,t) € CY(R™ ,R),t € [0,27p);

(H2) 38 > 2,8H(2,t) < (H,(2,t), 2);

(H3) 3ecp > 0,|H,(2,t)] < czl2)f~ Y

(H4) H(z,t) > c1|z|P.

Classically solutions of (1) called subharmonics. The first results in this area were local
in nature found using perturbation techniques. Under suitable assumption on H near the
origin, there exists a sequence of subharmonics with arbitrary large minimal period. (See
[4], [8]) Subsequently new results were obtained by a global approach using calculus of
variations. It has been proved that there are distinct solutions z(p); Futhermore, if H
has subqradratic of superquadratic grown at the origion and infinity, then the minimal
period of z(p) tends to infinity as p — oco. See [9] and [5]. Recently in |7} a more precise
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result was obtained showing the mutiplicity existence of minimal period for subquadratic
nonautonomous system under some “stronger” conditions.

In this paper, we obtain the following theorems of multiplicity Harmonic solutions with
the minimal period 2xp for nonautonomous superquadratic hamiltonian system (1).

+2
Theorem 1.1 For any integer p > 1, such that cz/cf_27 < V28/Vk, where 1 < k < sp,sp
is the least prime factor of p. Then under assumptions H1-Hf, there are at least kN
distinct solutions with minimal perlod 2xp of system (1).
g2
Theorem 1.2 Let H be as in theorem 1.1 with k = 1, that 1s c2/c12ﬂ < V2B. Then
for any integer p > 1, there exist at least N distinct solutions with minimal period 27p of
system (1).
For the autonomous cases, it is easily seen that

: B2
Corollary 1 Let H = H(z) € CY(R*™ | R) sastisfies H1-H{ with cz/c,”” < V2B. Then
hamaltonian system Jz = H'(z) has at least N periodic solutions with minimal period 27p
of system (1).

The proof of the theorem relys on the theory of Z,-index 1, and its pseuo-index ¢, in
section 4 which is based on the theory in [2]. Therefore, the difficulty of the indifefinite
functional I, which always appear in the study of superquadratic hamiltionian system is
overcome. In general, it is diffcult to check the P.S condition and the existence of suitable
finite interval of minimax value for the multiplicity solutions.

In this paper, we first transform the problem (1) equivalently to the problem of critical
value of an indefinite functional I; then some estimates of I are given in section 2 and
section 3 which is used to prove the minimal period of the solution; at last, the proof of
Theorem 1.1 is given in section 5.

§2. The Equivalent Problem

In this section, we transform the problem (1) equivalently to the critical value problem
of functional I. Set E = H/%(|0,2xp], R?V).

For any w € E, define the linear operator K : £ — F as: (v, Kw) = [[(w),v,w € E
27p
and Iy is the extension of the functional / wJwdt from C®([0,27p], R*N) into E, {-,-)

0
is the inner product in Hilbert space E. It can be proved that:
(1) K is a bounded selfadjoint operator,

i
() o(K)={ki : by = i 5 € 2\(0}),
P
Let E; be the eigenspace relative to the eigenvalue k;, then
E; = span{sin(j/p)tei + cos(j/p)tex+n, cos(j/p)ter — sin(j/p)texin}

where k=1,...,N, e, = (0,---,1,---,0) € r2N
Under the identification (u1,---,uzn), with (u; +duny1,- -, uny + fuzn) € CN | we
have E; = {u(t) = ¢ ") ¢ € CN}. |
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Set EtY = Ei®E, @+, E-=E ®E_3®---. and E° = KerK = R*N | then
E=E*®E o E°

By the principle of variational, the original problem (1) is transformed into the problem.
of critical points of functional 7 : £ — R

2xp
I(2) = 1/2(z, K ) — /0 " H(z,t)dt, z € E.

Forke N,set Hy=FE1 D E2D---® E, H+_E+ H_—Hk+E +E0 then we
have estimate,

Proposition 2.1 For eny z€ H™,I(z) < h(B) = wkﬁ(ht)ﬁi QEE

k
Proof For z€ H™, thatis z = z; + 2~ + 2° with z, = Zgje“‘(j/”)‘ € Hg, 2z~ € E~ and

Jj=1
'zo € E°, one has
1 1 1 [27p .
E(z,Kz) < §<zk,sz >= 5/0 (zg, J 2 > dt
1 [ k . o
= 5/ Z(]/p) <-S~J~e_'(-7/p)t’S-je“‘(l/P)t > dt
0 .
i=1
k /21’}) k 2 k /2rp 9 k /21rp 2
< J4dt = — zi|“dt < — z|“dt
- 2pJo Zlm 2p Jo |2l ~ 2p Jo l#l
. (8~2) 2xp
< oo (enn) T[T el
0
hence by H4,

1 27xp
I(z) < «-(z,Kz)—/ c1|z|Pdt
0

IA

k 2xp
: ® (2xp) T / 2P de)lP — e / |2|Pdt
0

(ﬂ—2 ﬁ 2
Tk (ﬂpcl ) ﬂ

IA

§3. The Estimate of Minimal Period Solution

In this section, we give a sufficient condition for the minimal perlod of solution which
will be used in section 5.
For any solution of system (1) in E, we have following estimates.

— 217 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Proposition 3.1 Suppose H sastisfies H1-H{, z is a solution of system (1) with minimal
period 2np/m,m > 2, then

2oty (8 - D)o,

I(z) > ¢(8) = (

p)
C2

Proof By Wrintinger’s inequality, ||u||z2 < %Hﬁnm, in which T is the period of u(t), we

have
2l < (1/m)(27p/2x)||2]| 2 < (p/m)||2]|L2-
By H2-H4 and Holder’s inequality,

27rp 27p , B 2rp 5
g HG@,04 5/0 (H(z,t),z)dt—/; (z, T3)dt

2 p 2 P 2 2mp 26-2
< e = ZIHe 0l < B [ e
M 27p
< ﬂc%— H(z,t)dt
m ¢1 Jo

in which M = max{|z(t)]?~2,t € [0,2xp]}. By H4, H(z,t) > O for z # 0,s0 M > —'pp—fg—‘
and
B B
H(z,t) > M7= > (mfcy/pc}) -2

Moreover, according to H2,

27p 2xp
[T e8 - B = [T e By - Bl
ﬂ_2 27xp
- T 0
> 9(8).

Comparing with proposition 2.1, we have the following estimate of the minimal peri-
odic solution.

I(2)

H(z,t)dt > n(8 - 2)(mper/c}) 7 prs

pt2
Proposition 3.2 Suppose H sastisfies condition H1-H4 and that for cy,cz, if cz/c;”” <

V2B/V'k, then for any periodic solution z € H™ of system (1), 27p is its minimal period.

Proof By Proposition 2.1, for any z € H~ we have I(z) < h(8). Meanwhile, as
cz/cl%%z < V2B/Vk, it is easy check that h(B) < g(B), for 8 > 2, so that I(z) < g(8),
which is contradiction to Proposition 3.1. So we have to take m = 1, solution z(t) of
system (1) has minimal period 2np.

§4. Theory of Z,-index and Its Pseudoindex

As we know that functional I is an indefinite functional which is neither bounded from
below nor from above. In order to overcome this obstacle, we have to use the theory of
Zp index and its pseudoindex on Banach space E which is based on [2].
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Define the norm-preserving operator:
T:E—E; Tu=u(t+2r), TP =1d
then, T generates a Z, group action on E.
Definition 4.1 The subset A of F 15 called invariant if TA C A.

Definition 4.2 The continuous map f : E — E is called T-equivariant if f(Tu) =
Tf(u),ue E.

Set >~ = {A C E: Ais closed and invariant}, W = {h € C(E, E), k is T-equivariant}.

Define the index map 1, : 3, — N U {400}, N = {n € Z|n > 0} as follows:

For any A € }_,i,(A) = k, in which k is the smallest nonnegative integer such that
there exists a continuous map h : A — C¥\{0},h = (hy,---,hi) and integers m; # 0 is
relatively prime to p,1 < j < k such that h;j(Tu) = e™I(27/P)pi(m). Set i,(A) = O if
A = ¢ and ip(A) = +oo, if no such map exists.

According to [1] and [2], (15, W,Y]) is an index, called Z,-index.

Let now W* be the class of mappings h : £ — E such that:

(1) h is T-equivariant,

(2) his a homomorphism of the form e* + 4, ¢ is compact. If S, = {u € E| ||u|| = p}.
one defines a pseudoindex 7, on the class ) as:

*

i7(A) = min{i,(h(A) [V E* (]S, heW™}, YA€) .

According to [2], it is an pseudo-index (i, w", 7).
Now we shall give the computation of the pseudo-index of invariant space.

Definition 4.3 An index theory is said to sastiafy the dimension property if there is a
positive integer d such that i,(V¥* N S)) = k for all dk-dimensional subspace V¥* € ¥
such that V¥ N F = {0}, F = {u € E|T,u = u, Vg € G}.

According to Proposition 2.3, we have

Proposition 4.1 For the Z,-index (i,,W, "), it has the dimension property with d = 2.

Proof By the Proposition 2.3 in [W1], when n=1,Q =B, ={u€ E||jul| < 1},b=a =
kN, the proof is complete and d = 2.
Then, as consequence of Theorem 2.5 of [2], we have

Propositfon 4.2 {,(H")=kN.

Proof By Theorem 2.5 of 2], dim(H*NH~) = dim H, = 2kN. FNH* = {0},cod(H* +
H™)=codE=0,d=2,s01,(H")=kN.

At last, according to the Theorem 4.2 in (2], when we take the index I and its pseu-
doindex I; specially as the Z;-index i, and 1, then we get

Theorem 4.1 Suppose f is a functional which satisfies following conditions f1 — f4, then
if the integer k
k=1/ddim(H*(VH™) - cod(H* + H™)]

-
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is well define and positive, the numbers ¢, = inf sup f(u) are critical values of f and
i (A)>k uca

c0<cy < < e < Coo. Moreover if c = cp = -+ = Ciyr, then i,(K.) < r+1.

(f1) f(u) = 3(u, Ku) + ¢(u), when K is a bounded selfadjoint operator and Y is
compact;

(f2) [ sastisfies P.S. condition in [co, Coo);

(f3) f is Ty-invariant;

(f4) a FNnHY = {0},F ¢ H ,K(H™) = H™,F defined in definition 4.3; b.
f'(u) > co,Vue HF NS,y c. f(u) < coo,Yu € H™.

§5. The Proof of Theorem 1.1

According to Theorem 4.1 in section 4, we will prove Theorem 1.1 in this section. First
of all, we have to prove conditon (f;) for I.

Proposition 5.1 The functional I sastisfies P.S. condition, that is ,for any sequence (v;)
in E such that I(v) is bounded and I'(v;) — O as j — oo, then it contains a convergent
subsequence.

Proof By Proposition 3.1, we know that O is an isolated critical value of f, so according
to Lemma 4.8 in {2], the P.S. condition is sastisfied if (v;) is bounded. But, similar to the
proof of [1], if we replace Hx by H, then it can be shown in the same way that (v;) is
bounded.

Now let us give the proof of Theorem 1.1 as follows:

First by Proposition 5.1, we know that condition (fz) in Theorem 4.1 is satisfied
together with (f1),(f3), as one easily checks.

Second, condition (a) follw from the definition above, and ¢q0f(c¢) follows from Propo-
sition 2.1, k = kN, ceo = h(B).

Let now H* NS, = EtNS,, where p will be chosen in a suitable way in the following.
Then, for z € E*, by the definition of E* and H, — Hy, we have

Cc2 27p
B Jo
As H'/? is continuously embeded into L?, then there exist cg > 0 that

1
I(z) > S |lz)* ~ |2/Pdt
I(z) 2 Sl=|* - —ﬂ—IIZII
then, as z € S,, for sufficiently small p > 0, one has

1
I(z)ngz—”—zc—"pﬁupo

B
so condition (b) is satisfied. Therefore by Theorem 4.1, the kN numbers ¢, = inf sup I(
i;(A)zk uCA
u) are critical values of I and ¢ < ¢; < +++ < exn < €oo = h(B). Moreover, if ¢ = ¢, =
Ck41 =% *** = Ciyr, then i,(K;) > r + 1.
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%

3 For each critical value ¢; < h(8),1 < ¢ < kN, it correspondence to a periodic solution
of system (1) and have 27p as its minimal period by Proposition 3.2. If ¢; < ¢z < -+- <
ckN, then I admitts kN distinct solutions of system (1). On the contary, if for some
le{l,--,kN},c=¢g =ci+1 ="+ = Ci4r,r > 1;1 <1 < l+r < kN, then we claim that
K. contain infinitely any distinct critical orbits.

In fact, assume that K, = U}, _,6(um), where Ouy, is the z,-orbit of up, as in [7], it is
. proved that there is a suitable map h : K. — R\{0}, so that 1,(K.) = 1, then ¢}(K.) < 1.
But we know that ¢7(K.) > r + 1 > 1, so it is impossible, the proof is now complete.

Remark For the general cases of any period pT, the process of proof and the results are
the same, so it can be generalized to the general cases.
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