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On Baernstein’s Star-Function *

Gung Guifu  Liu Liquan
(Dept. of Math., Heilongjiang Univ., Harbin , China)

Let g be a real-valued integrable function on [—=,7|. The Baernstein’s star-function
of g as given in [1] is
g"(8) = sup / g(z)dz,0 <8 <,
|E|:20 E
where |E| denotes the Lebesgue measure of the set E C [—x,x|. The *-function has many
applications [1-8] to complex function theory. The following theorem plays an essential
role in the proof of the sharp inequality (cf. [1])

/ If(ré®)[Pdb < / Ir/{(1 = ré'®)2}|Pdb,p > 0,0 < r < 1,
—-x -

for all functions f = z + :-- regular and univalent in |2| < 1.
A function ¢ continuous on —oco < z < oo is called convex if ¢(3(z + y)) < [d(z) +
#(y)], and is called strictly convex if strict inequality holds unless z = y. For real-valued

g(z), let [g(z)]t = max{g(z),0}.

Theorem (Baernstein) For g,h € L!|—n, 7|, the following statements are equivalent.
(i) For every convez and nondecreasing function ¢ on (-00,00),

[ dlaendz< [ sihiz)de. (1

(ii) For each t € (—o0,00),

k3 x
/ l9(z) — ¢t dz < / (h(z) - t]* dz. (2)
- -

(i) ¢*(8) < h*(6),6 € [0, ].

We shall discuss the equivalent conditions for strict inequalities in (i)- (iii), and study
some properties of the *-function.

As in [1], denote by § the symmetric nonincreasing rearrangement function of g. For
g € LY-m,7], let

I(t) = /_ :[g(x) — *da. (3)
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Clearly I,(t) is continuous on —oo < t < oo.

Lemma 1 For g € L'[~n,7],0 < 0 < m,9*(8) = ffo g(z)dz. For each § € [0, 7], there
erists a set £ C [—n,n] with |E| = 20 for which g*(0) = [ g(z)dz.

Lemma 2 Forg € LY-n,7] and0<a<b<c<,

1 b 1 [
b_aLg(z)dzzmA g(z)dz.

Lemma 1 is due to Baernstein [1]. Lemma 2 follows from the definition of g.

Lemma 3 For g,h € LY[—n, 7|, the equality g*(8) = h*(0) kolds on [0,x] if and only if
the equality §(z) = h(z) holds a.e. on [—m,x].

Proof The sufficiency follows readily from Lemma 1. If ¢*(9) = h*(8), differentiating
both sides and using Lemma 1, we get (g*(9))' = 2g(0) a.e. in [0,7x]. So is h*(#). Thus
g(z) = h(z) a.e. on [—m, 7).

Theorem 1 If g,h € L}[—x, x| and satisfy

[ s@z = [ h(z)as ()

-7 —r

then the following statements are equivalent.
(a) For each function ¢(z) strictly conver on (—o0,00),

[ #a@iz < [ plnia)ds. )

(b) There exists an interval I = [a,b],a < b, such that for almost every t €J,

/’r l9(z) — 1] *dz < /, (h(z) — ¢|* dz. ()

- -7

For t outside I, inequality (2) holds.
. (c) There ezists an interval J = [p,9],0 < o < ¢ < 7, such that for almost every
0 € J,g*(0) < h*(6). For 6-€ [0,7]\J,g*(0) < h*(8).

Proof (a)==>(b). Choose a twice differentiable ¢(z) with ¢”(z) > 0 on (~o0,00), and
#(z) > ¢#(0) = 0 for = # 0. Write ¢ = ¢1 + ¢; where ¢1(z) = ¢(z) for z < 0 and vanishes

‘elsewhere. It is easy to see that

h1(2) = [ 1t-a a6i(0,6200) = [ 2 - 7 s 0)

Interchanging the order of integration, we obtain

[ #uienda = [ ooz = [ (1e) - 1,140
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Interchanging the order of integration and using (4), we have the same equality with ¢,
and ¢ replaced by ¢; and ¢} respectively. Thus

[ #thianaz - [ slo@)dz= [ (1) - Lo o).

The left-hand side is positive by the hypotheses (a). Hence (b) follows since d¢'(t) > 0
on (—oo,00) and Ix(t) — I;(t) > 0 on (—o0,00) by the above Baernstein’s Theorem (use a
strict nondecreasing ¢).

(b)== (a). Let ¢ < a at which ¢ is differentiable and set u(t) = ¢'(t—). Representating
#(z) in the form

8() = 9(0) + (= () + [ fo - et dute),
we have

S(h(=) - #a(@) = ¢AE) —g(@)+ [ 1h(e) ~ 1 du()
- [T a@) - 1+ auo).

Using (4) and interchanging the order of integration, we obtain

[ e@naz - [ se@nes = [0 - L0l

b
S ALCERAOIEMD
> mlg'(t') - ¢'(a’)] > 0,
where a' and V', a < @’ < b’ < b, are differentiable points of ¢, and m is the minimal value
of I(t) — I,(t) on the interval [a’,d']. '
(b)==>(c).Clearly b <sup ess h(8), by the properties of a symmetric nonincreasing
rearrangement function. Set

o= inf {R(8+) <b< h(8-)},¢¥= JSup {h(60+) < a < h(0-)}.

0<8<x

\%

If o = 4, the ¢ > 0 and I;(t) < I4(t) a.e. on I. Therefore, there exists a set F C [0, ¢]
with |F| > 0 on which g(z) < h(z). Let o be such that 0 < |{[0,0] N F}| < |F|, and set
J = [o,¢]. Then, for § € J,g*(8) < h*(9). If ¢ # ¢, we choose J = [p,y]. By Lemma 1,
for @ € J, there is a set G C [—n, 7] of measure 20 such that

9" (0) = fG g(z)dz = /G lg(z) — t]dz + 206¢.
For ¢ € [h(6-+), A(6-)],

[lo(@) -tz

IA

/, [9(z) — t]*dz < /_:[h(:c) —t]tdz

-r

= [T - itis= [ @) - ta

—6
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Thus ,
9 (0) < / [(A(z) — t|dz + 20t = h*(8) a.e. on J.
—6
(c)=>(b). If g(y) # G(¥+), set a = §(¥+).b = §(p) and set I = [a,b]. If g(p) =
g(¢¥+) and g(p) > h(p), then o > 0 and for § € J,g*(6) < h*(0). In this case, there
exists a point ¢ at which g(z) is continuous and g(o) < h(c). Hence g*(0) < h*(8) for
0 <0< . Seta=g(p),b=h(c) and set I = |a,b]. In both cases, for t € I and for §
satisfying §(6+) < ¢ < g(@), the inequalities

[Tl -trae = ["lote) -t dz= [ 5ta) - tdn = 4°(0) - 200
B (8) — 26t = /_ :[E(z)—t]dxg /_ " A(z) - ]t dz

- :r[h(;:) ~)tdz

N

hold a.e. on I.
If §(¢) = g(¥+) and g(p) < h(p), set a = §(),b = h(p) and set I = [a,b]. Then for
t € I and @ satisfying g(6+) <t < g(4),

/_Z[g(x) —t]tde = g¢*(0) — 26t < h*(6) — 20t = /9 [h(z) - t)dz

-8
T

[/ ks

- / h(z) - t]*dz < [ [R(z) - t]*dz = / k(<) - {*dz.
-8 —-r -7

The proof is complete.

Theorem 2 If g € LY[~n,7],sthen g% (0) 1s concave on 0 < 8 < 7, and hence it is twice
differentiable a.e. in (0,7) with (g*)"(6) < 0.

Proof For0 < p <y <mleta=¢p,b= %(go + 9),¢ = ¢ and applying Lemma 2, we
find

7@ -0 5 = [ s [ g

¥
== 2/b¢§(a:)dz — /bg(z)d:c
b

- /_bg(x)dx—/_ig(z)dx
= g*(p;rdj)»g*(sO)

which completes the proof.

Theorem 3 Let g,h € L'|—n,x]. Then for a > 0,8 > 0, the equality

(ag + BR)"(0) = ag™(0) + BR™(0) (7)
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holds on 0 < 8 < 7 if and only if the equality

(ag(z) + Bh(z))” = ag(z) + Bh(z) (8)
holds a.e. on [—m,x].
Proof (7)==(8). f a =0or 8 =0, it is trivial. Now let & > 0,8 > 0. By Lemma 1, for
8 € (0,7),

[ (ast@) + prie)de = L [ (a(a) + phiz) e

— Lag+ )+ (0) = Hlog" @)+ 17 (0)

_ /0 (‘i[ag(:c)—i— Bh(z)ldz.

The leftest and the rightest sides are differentiable in 0 < # < 7, except for a countable set.
Hence (8) holds a.e. -on [0,#]. It also holds on [—=,0] by the symmetrility of symmetric
nonincreasing rearrangement function.

(8)= (7). For 0 < § < x, by Lemma 1,

Il

[ (e0@) + Br(e)az
-/ :[ag(:z) + Bh(z)]dz = ag”(8) + Bh"(6)

(ag + BR)" ()

i

which proves (7) and hence the Theorem.

Remark If g and h are continuous on [—x, x|, then the words “a.e. ”in Theorems 1 and
3 can be omitted.

Theorem 4 If u and v are subharmonié functions in |z| < 1 and u s subordinate to v,
then the equality

u*(rew) = v*(reia),ﬂ € (0,), 9)

holds for some r € (0,1) if and only if d(re'®) = v(re'®) holds on [—m, 7] and either v is

harmonic or u(z) = v(Az),|A| = 1.

Proof The sufficiency is easy. To prove the necessity, we apply Lemma 3 to conclude
that the equality

i(re'®) = o(re'?) : (10)
holds a.e. on [—x,x].

Since u is subordinate to v,u(z) = v(w(z)) where w(z) is analytic in |2| < 1 and
satisfies |w(z)| < |z|. Suppose that w(z) # Az,|A\| = 1. Then |w(z)| < |2|. If v is not
harmonic, let G(z) be harmonic in |z| < r,r < 1, and satisfies G(re'’) = v(re'). By the
maximum principle of subharmonic functions, v(w(z)) < G(w(z)) on |z| < r. Thus

[ atenan. = [ utreyis = [ o(u(re))as
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< /’r G(w(re®))dd = 27G(0) = /;r G(re'®)ds

x . x .

= / v(re'?)do = / o(re'?)do.
- -

This contradicts (10). Hence either u(z) = v(Az),|A| = 1, or v is harmonic in |z| < r. The

proof is complete.
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