## On Baernstein's Star-Function \*

Gung Guifu Liu Liquan
(Dept. of Math., Heilongjiang Univ., Harbin, China)

Let g be a real-valued integrable function on  $[-\pi, \pi]$ . The Baernstein's star-function of g as given in [1] is

$$g^*(\theta) = \sup_{|E|=2\theta} \int_E g(x)dx, 0 \le \theta \le \pi,$$

where |E| denotes the Lebesgue measure of the set  $E \subset [-\pi, \pi]$ . The \*-function has many applications [1-8] to complex function theory. The following theorem plays an essential role in the proof of the sharp inequality (cf. [1])

$$\int_{-\pi}^{\pi} |f(re^{i\theta})|^p d\theta \leq \int_{-\pi}^{\pi} |r/\{(1-re^{i\theta})^2\}|^p d\theta, p > 0, 0 < r < 1,$$

for all functions  $f = z + \cdots$  regular and univalent in |z| < 1.

A function  $\phi$  continuous on  $-\infty < x < \infty$  is called convex if  $\phi(\frac{1}{2}(x+y)) \leq \frac{1}{2}[\phi(x) + \phi(y)]$ , and is called strictly convex if strict inequality holds unless x = y. For real-valued g(x), let  $[g(x)]^+ = \max\{g(x), 0\}$ .

**Theorem (Baernstein)** For  $g,h \in L^1[-\pi,\pi]$ , the following statements are equivalent.

(i) For every convex and nondecreasing function  $\phi$  on  $(-\infty,\infty)$ ,

$$\int_{-\pi}^{\pi} \phi(g(x)) dx \leq \int_{-\pi}^{\pi} \phi(h(x)) dx. \tag{1}$$

(ii) For each  $t \in (-\infty, \infty)$ ,

$$\int_{-\pi}^{\pi} [g(x) - t]^{+} dx \leq \int_{-\pi}^{\pi} [h(x) - t]^{+} dx.$$
 (2)

(iii)  $g^*(\theta) \leq h^*(\theta), \theta \in [0, \pi].$ 

We shall discuss the equivalent conditions for strict inequalities in (i)- (iii), and study some properties of the \*-function.

As in [1], denote by  $\bar{g}$  the symmetric nonincreasing rearrangement function of g. For  $g \in L^1[-\pi,\pi]$ , let

$$I_g(t) = \int_{-\pi}^{\pi} [g(x) - t]^+ dx. \tag{3}$$

<sup>\*</sup>Received Apr. 8 1991. Project Supported by National Natural Science Faundation of China.

Clearly  $I_g(t)$  is continuous on  $-\infty < t < \infty$ .

**Lemma 1** For  $g \in L^1[-\pi, \pi], 0 \le \theta \le \pi, g^*(\theta) = \int_{-\theta}^{\theta} \bar{g}(x) dx$ . For each  $\theta \in [0, \pi]$ , there exists a set  $E \subset [-\pi, \pi]$  with  $|E| = 2\theta$  for which  $g^*(\theta) = \int_E g(x) dx$ .

**Lemma 2** For  $g \in L^1[-\pi, \pi]$  and  $0 \le a < b < c \le \pi$ ,

$$\frac{1}{b-a}\int_a^b \bar{g}(x)dx \geq \frac{1}{c-b}\int_b^c \bar{g}(x)dx.$$

Lemma 1 is due to Baernstein [1]. Lemma 2 follows from the definition of  $\bar{g}$ .

**Lemma 3** For  $g, h \in L^1[-\pi, \pi]$ , the equality  $g^*(\theta) = h^*(\theta)$  holds on  $[0, \pi]$  if and only if the equality  $\bar{g}(x) = \bar{h}(x)$  holds a.e. on  $[-\pi, \pi]$ .

**Proof** The sufficiency follows readily from Lemma 1. If  $g^*(\theta) = h^*(\theta)$ , differentiating both sides and using Lemma 1, we get  $(g^*(\theta))' = 2\bar{g}(\theta)$  a.e. in  $[0, \pi]$ . So is  $h^*(\theta)$ . Thus  $\bar{g}(x) = \bar{h}(x)$  a.e. on  $[-\pi, \pi]$ .

**Theorem 1** If  $g,h \in L^1[-\pi,\pi]$  and satisfy

$$\int_{-\pi}^{\pi} g(x)dx = \int_{-\pi}^{\pi} h(x)dx \tag{4}$$

then the following statements are equivalent.

(a) For each function  $\phi(x)$  strictly convex on  $(-\infty, \infty)$ ,

$$\int_{-\pi}^{\pi} \phi(g(x))dx < \int_{-\pi}^{\pi} \phi(h(x))dx. \tag{5}$$

(b) There exists an interval I = [a, b], a < b, such that for almost every  $t \in I$ ,

$$\int_{-\pi}^{\pi} [g(x) - t]^{+} dx < \int_{-\pi}^{\pi} [h(x) - t]^{+} dx.$$
 (6)

For t outside I, inequality (2) holds.

(c) There exists an interval  $J = [\varphi, \psi], 0 \le \varphi < \psi \le \pi$ , such that for almost every  $\theta \in J, g^*(\theta) < h^*(\theta)$ . For  $\theta \in [0, \pi] \setminus J, g^*(\theta) \le h^*(\theta)$ .

**Proof** (a)  $\Longrightarrow$  (b). Choose a twice differentiable  $\phi(x)$  with  $\phi''(x) > 0$  on  $(-\infty, \infty)$ , and  $\phi(x) > \phi(0) = 0$  for  $x \neq 0$ . Write  $\phi = \phi_1 + \phi_2$  where  $\phi_1(x) = \phi(x)$  for x < 0 and vanishes elsewhere. It is easy to see that

$$\phi_1(x) = \int_{-\infty}^{\infty} [t-x]^+ \, d\phi_1'(t), \phi_2(x) = \int_{-\infty}^{\infty} [x-t]^+ \, d\phi_2'(t).$$

Interchanging the order of integration, we obtain

$$\int_{-\pi}^{\pi} \phi_2(h(x)) dx - \int_{-\pi}^{\pi} \phi_2(g(x)) dx = \int_{-\infty}^{\infty} [I_h(t) - I_g(t)] d\phi_2'(t).$$

Interchanging the order of integration and using (4), we have the same equality with  $\phi_2$  and  $\phi_2'$  replaced by  $\phi_1$  and  $\phi_1'$  respectively. Thus

$$\int_{-\pi}^{\pi}\phi(h(x))dx-\int_{-\pi}^{\pi}\phi(g(x))dx=\int_{-\infty}^{\infty}[I_h(t)-I_g(t)]d\phi'(t).$$

The left-hand side is positive by the hypotheses (a). Hence (b) follows since  $d\phi'(t) > 0$  on  $(-\infty, \infty)$  and  $I_h(t) - I_g(t) \ge 0$  on  $(-\infty, \infty)$  by the above Baernstein's Theorem (use a strict nondecreasing  $\phi$ ).

(b)  $\Longrightarrow$  (a). Let  $c \le a$  at which  $\phi$  is differentiable and set  $\mu(t) = \phi'(t-)$ . Representating  $\phi(x)$  in the form

$$\phi(x)=\dot{\phi(c)}+(x-c)\phi'(c-)+\int_c^\infty [x-t]^+d\mu(t),$$

we have

$$\phi(h(x)) - \phi(g(x)) = \phi'(c)(h(x) - g(x)) + \int_{c}^{\infty} [h(x) - t]^{+} d\mu(t) - \int_{c}^{\infty} [g(x) - t]^{+} d\mu(t).$$

Using (4) and interchanging the order of integration, we obtain

$$\int_{-\pi}^{\pi} \phi(h(x))dx - \int_{-\pi}^{\pi} \phi(g(x))dx = \int_{c}^{\infty} [I_{h}(t) - I_{g}(t)]d\mu(t)$$

$$> \int_{a}^{b} [I_{h}(t) - I_{g}(t)]d\mu(t)$$

$$\geq m[\phi'(b') - \phi'(a')] > 0,$$

where a' and b',  $a \le a' < b' \le b$ , are differentiable points of  $\phi$ , and m is the minimal value of  $I_h(t) - I_g(t)$  on the interval [a', b'].

(b) $\Longrightarrow$ (c). Clearly  $b \le \sup \operatorname{ess} \bar{h}(\theta)$ , by the properties of a symmetric nonincreasing rearrangement function. Set

$$\varphi = \inf_{0 \le \theta \le \pi} \{\bar{h}(\theta+) \le b \le \bar{h}(\theta-)\}, \psi = \sup_{0 \le \theta \le \pi} \{\bar{h}(\theta+) \le a \le \bar{h}(\theta-)\}.$$

If  $\varphi = \psi$ , the  $\varphi > 0$  and  $I_g(t) < I_h(t)$  a.e. on I. Therefore, there exists a set  $F \subset [0, \varphi]$  with |F| > 0 on which  $\bar{g}(x) < \bar{h}(x)$ . Let  $\sigma$  be such that  $0 < |\{[0, \sigma] \cap F\}| < |F|$ , and set  $J = [\sigma, \varphi]$ . Then, for  $\theta \in J$ ,  $g^*(\theta) < h^*(\theta)$ . If  $\varphi \neq \psi$ , we choose  $J = [\varphi, \psi]$ . By Lemma 1, for  $\theta \in J$ , there is a set  $G \subset [-\pi, \pi]$  of measure  $2\theta$  such that

$$g^*( heta) = \int_G g(x)dx = \int_G [g(x) - t]dx + 2\theta t.$$

For  $t \in [h(\theta+), h(\theta-)]$ ,

$$\int_{G} [g(x) - t] dx \leq \int_{-\pi}^{\pi} [g(x) - t]^{+} dx < \int_{-\pi}^{\pi} [h(x) - t]^{+} dx$$

$$= \int_{-\pi}^{\pi} [\bar{h}(x) - t]^{+} dx = \int_{-\theta}^{\theta} [\bar{h}(x) - t] dx.$$

Thus

$$g^*( heta) < \int_{- heta}^{ heta} [ar{h}(x) - t] dx + 2 heta t = h^*( heta)$$
 a.e. on  $J$ .

(c)  $\Longrightarrow$  (b). If  $\bar{g}(\varphi) \neq \bar{g}(\psi+)$ , set  $a = \bar{g}(\psi+), b = \bar{g}(\varphi)$  and set I = [a,b]. If  $\bar{g}(\varphi) = \bar{g}(\psi+)$  and  $\bar{g}(\varphi) \geq \bar{h}(\varphi)$ , then  $\varphi > 0$  and for  $\theta \in J, g^*(\theta) < h^*(\theta)$ . In this case, there exists a point  $\sigma$  at which g(x) is continuous and  $\bar{g}(\sigma) < \bar{h}(\sigma)$ . Hence  $g^*(\theta) < h^*(\theta)$  for  $\sigma \leq \theta \leq \varphi$ . Set  $a = \bar{g}(\varphi), b = \bar{h}(\sigma)$  and set I = [a,b]. In both cases, for  $t \in I$  and for  $\theta$  satisfying  $\bar{g}(\theta+) \leq t \leq \bar{g}(\theta)$ , the inequalities

$$\int_{-\pi}^{\pi} [g(x) - t]^{+} dx = \int_{-\pi}^{\pi} [g(x) - t]^{+} dx = \int_{-\theta}^{\theta} [\bar{g}(x) - t] dx = g^{*}(\theta) - 2\theta t$$

$$< h^{*}(\theta) - 2\theta t = \int_{-\theta}^{\theta} [\bar{h}(x) - t] dx \leq \int_{-\pi}^{\pi} [\bar{h}(x) - t]^{+} dx$$

$$= \int_{-\pi}^{\pi} [h(x) - t]^{+} dx$$

hold a.e. on I.

If  $\bar{g}(\varphi) = \bar{g}(\psi +)$  and  $\bar{g}(\varphi) < \bar{h}(\varphi)$ , set  $a = \bar{g}(\varphi)$ ,  $b = \bar{h}(\varphi)$  and set I = [a, b]. Then for  $t \in I$  and  $\theta$  satisfying  $\bar{g}(\theta +) \leq t \leq \bar{g}(\theta)$ ,

$$egin{array}{lcl} \int_{-\pi}^{\pi} [g(x)-t]^+ dx & = & g^*( heta) - 2 heta t \leq h^*( heta) - 2 heta t = \int_{- heta}^{ heta} [ar{h}(x)-t] dx \ & = & \int_{- heta}^{ heta} [h(x)-t]^+ dx \leq \int_{-\pi}^{\pi} [ar{h}(x)-t]^+ dx = \int_{-\pi}^{\pi} [h(x)-t]^+ dx. \end{array}$$

The proof is complete.

**Theorem 2** If  $g \in L^1[-\pi,\pi]$ , then  $g^*(\theta)$  is concave on  $0 \le \theta \le \pi$ , and hence it is twice differentiable a.e. in  $(0,\pi)$  with  $(g^*)''(\theta) \le 0$ .

**Proof** For  $0 \le \varphi < \psi \le \pi$ , let  $a = \varphi, b = \frac{1}{2}(\varphi + \psi), c = \psi$  and applying Lemma 2, we find

$$g^{*}(\psi) - g^{*}(\frac{\varphi + \psi}{2}) = \int_{-\psi}^{\psi} \bar{g}(x)dx - \int_{-b}^{b} \bar{g}(x)dx$$

$$= 2\int_{b}^{\psi} \bar{g}(x)dx - \int_{\varphi}^{b} \bar{g}(x)dx$$

$$= \int_{-b}^{b} \bar{g}(x)dx - \int_{-\varphi}^{\varphi} \bar{g}(x)dx$$

$$= g^{*}(\frac{\varphi + \psi}{2}) - g^{*}(\varphi)$$

which completes the proof.

**Theorem 3** Let  $g, h \in L^1[-\pi, \pi]$ . Then for  $\alpha \geq 0, \beta \geq 0$ , the equality

$$(\alpha g + \beta h)^*(\theta) = \alpha g^*(\theta) + \beta h^*(\theta) \tag{7}$$

holds on  $0 \le \theta \le \pi$  if and only if the equality

$$(\alpha g(x) + \beta h(x))^{-} = \alpha \bar{g}(x) + \beta \bar{h}(x)$$
 (8)

holds a.e. on  $[-\pi,\pi]$ .

**Proof** (7) $\Longrightarrow$ (8). If  $\alpha = 0$  or  $\beta = 0$ , it is trivial. Now let  $\alpha > 0, \beta > 0$ . By Lemma 1, for  $\theta \in (0, \pi)$ ,

$$egin{array}{lll} \int_0^ heta (lpha g(x)+eta h(x))^- dx &=& rac{1}{2} \int_{- heta}^ heta (lpha g(x)+eta h(x))^- dx \ &=& rac{1}{2} (lpha g+eta h)*( heta) = rac{1}{2} [lpha g^*( heta)+eta h^*( heta)] \ &=& \int_0^ heta [lpha ar{g}(x)+eta ar{h}(x)] dx. \end{array}$$

The leftest and the rightest sides are differentiable in  $0 < \theta < \pi$ , except for a countable set. Hence (8) holds a.e. on  $[0,\pi]$ . It also holds on  $[-\pi,0]$  by the symmetric nonincreasing rearrangement function.

(8) 
$$\Longrightarrow$$
 (7). For  $0 \le \theta \le \pi$ , by Lemma 1,

$$egin{array}{lll} (lpha g+eta h)^*( heta) &=& \int_{- heta}^{ heta} (lpha g(x)+eta h(x))^- dx \ &=& \int_{- heta}^{ heta} [lpha g(x)+eta h(x)] dx = lpha g^*( heta)+eta h^*( heta) \end{array}$$

which proves (7) and hence the Theorem.

**Remark** If g and h are continuous on  $[-\pi, \pi]$ , then the words "a.e. "in Theorems 1 and 3 can be omitted.

**Theorem 4** If u and v are subharmonic functions in |z| < 1 and u is subordinate to v, then the equality

$$u^*(re^{i\theta}) = v^*(re^{i\theta}), \theta \in (0,\pi), \tag{9}$$

holds for some  $r \in (0,1)$  if and only if  $\bar{u}(re^{i\theta}) = \bar{v}(re^{i\theta})$  holds on  $[-\pi,\pi]$  and either v is harmonic or  $u(z) = v(\lambda z), |\lambda| = 1$ .

**Proof** The sufficiency is easy. To prove the necessity, we apply Lemma 3 to conclude that the equality

$$\bar{u}(re^{i\theta}) = \bar{v}(re^{i\theta}) \tag{10}$$

holds a.e. on  $[-\pi,\pi]$ .

Since u is subordinate to v, u(z) = v(w(z)) where w(z) is analytic in |z| < 1 and satisfies  $|w(z)| \le |z|$ . Suppose that  $w(z) \ne \lambda z, |\lambda| = 1$ . Then |w(z)| < |z|. If v is not harmonic, let G(z) be harmonic in |z| < r, r < 1, and satisfies  $G(re^{i\theta}) = v(re^{i\theta})$ . By the maximum principle of subharmonic functions, v(w(z)) < G(w(z)) on  $|z| \le r$ . Thus

$$\int_{-\pi}^{\pi} \bar{u}(re^{i\theta})d\theta = \int_{-\pi}^{\pi} u(re^{i\theta})d\theta = \int_{-\pi}^{\pi} v(w(re^{i\theta}))d\theta$$

$$<\int_{-\pi}^{\pi}G(w(re^{i heta}))d heta=2\pi G(0)=\int_{-\pi}^{\pi}G(re^{i heta})d heta \ =\int_{-\pi}^{\pi}v(re^{i heta})d heta=\int_{-\pi}^{\pi}ar{v}(re^{i heta})d heta.$$

This contradicts (10). Hence either  $u(z) = v(\lambda z)$ ,  $|\lambda| = 1$ , or v is harmonic in |z| < r. The proof is complete.

## References

- [1] A. Baernstein, Integral means, univalint functions, and circular symmetrization, Acta Math., 133(1974), 139-169.
- [2] A.Baernstein, Proof of Edrel's spread conjecture, Proc. London Math. Soc., 26(1973), 418-434.
- [3] A.Baernstein, A generalization of the  $\cos \pi \rho$  theorem, Trans. Amer. Math. Soc., 193(1974), 181-197.
- [4] A.Baernstein, On the harmonic measure of slit domains, Comples Variables Theory Appl., 9(1987), 131-142.
- [5] A.Baernstein and J.E. Brown, Integral means of monotone slit mappings, Comment. Math. Helv., 57(1982), 331-348.
- [6] A.Baernstein and G.Schober, Estimates for inverse coefficients of univalint functions from integral means, Israel J. Math., 36(1980), 75-82.
- [7] O.A. Busovskaya, Integral means of the derivatives of the star functions, Ukr. Math. J., 9(1983), 20-23.
- [8] Y.J. Leung, Integral means of the derivatives of some univalent functions, Bull. London Math. Soc., 11(1979), 289-294.

## 关于 Baernstein 星 函 数

官贵福 刘礼泉• (黑龙江大学数学系,哈尔滨150080)

## 摘 要

若函数 $g(\theta)$  在区间 $[-\pi,\pi]$  上是可积的. 称g 在测度为 $2\theta$  的各子集上的积分的最大值 $g^*(\theta)$  为g 的星函数. 本文考察了星函数的某些性质.