Submanifolds with Parallel Mean Curvature Vector*

Zhou Kouhua (Dept. of Math., Yangzhou Teachers College, Yangzhou)

In a previous paper [1], S.T. Yau proved the following theorem:

Theorem A Let M^n be an n-dimensional compact submanifold with parallel mean curvature in S^{n+p} with p > 1. If $(3 + \sqrt{n} - \frac{1}{p-1})S \le n$, then M^n lies in a totally geodesic S^{n+1} .

Lemma 1[2] If a given set of n+1 $(n \geq 2)$ real numbers a_1, \dots, a_n and k satisfy the inequality

$$\sum_{i=1}^{n} a_i^2 + k^2 < \frac{1}{n-1} \left(\sum_{i=1}^{n} a_i \right)^2.$$

Then for any pair of distinct i and $j = 1, \dots, n$, we have

$$k^2 < 2a_ia_j.$$

Lemma 2[2] For any set of 2n real numbers $\{a_1, \dots, a_n, b_1, \dots, b_n\}$ we have

$$\left(\sum_{i=1}^n a_i\right)\left(\sum_{j=1}^n a_j b_j^2\right) - \left(\sum_{i=1}^n a_i b_i\right)^2 = \sum_{i< j}^n a_i a_j (b_i - b_j)^2.$$

By virtue of Lemma 1 and Lemma 2, we improve the pinching constant of Theorem A as the following result:

Theorem Let M^n be an n-dimensional oriented closed submaonifold with parallel mean curvature in S^{n+p} with p > 1. If $(2 - \frac{1}{p-1})/(\frac{n}{n-1} + (1 - \frac{1}{p-1}))s < n$, then M^n lies in a totally geodesic S^{n+1} .

References

- [1] S.T. Yau, Submanifolds with constant mean curvature, II, Amer. J. Math., 97(1975), 76-100.
- [2] M. Okumura, Submanifolds and a pinching problem on the second fundamental tensors, Trans. Amer. Math. Soc., 178(1973), 285-291.

^{*}Received May 30, 1991.