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1. Introduction

(iven a second order linear differential equation with meromorphic coefficient
a(z)y" + b(z)y' +e(z)y =0 1D

in a domain D the local analytic theory for such equations is well developed, see e.g. [8].

If zo is a regular point for (1.1) then the theory advocates to utilize Taylor series
expansions of two linearly indepentdent solutions of (1.1). If z4 is a regular singular point
for (1.1), Frobenius’ method tells us to follow sometimes a laborious procedure which
produces two linearly independent solutions of (1.1). If 2o is a singular irregular point for
(1.1), some elementary books still skip this case, e.g. [2]. Other books suggest to utilize the
celebrated Liouville-Green approximation {or the WKB method). In other words we are
advised to classify a point zo and according to this classification we are asked to apply one
of three essentially different methods. If zg is a turning point, we need more sophisticated
methods.

The purpose of this article is to propose a different approach which is based on physical
motivation. Essentially we propose to utilize two theorems, developed in [3] and [4] which
have the advantage that at each point zp of interest, two linearly independent solutions
of (1.1) are given which represent an incident and a reflected wave, regardless if zg is a
regular, a singular regular, a singular irregular ro even a turning point for (1.1). The
formulas of course are valid even in cases where a(z),b(z) and c(z) are not necessarily
meormorphic. However, in order to aviod verbiage, we will assume that a(z),b(z) and
¢(z) are meromorphic.

In the sequel we will transform equation (1.1) into a canonical form compatible with
a “Schrodlinger type” equation of the form

2 = ¢(z)z, (1.2)

where z is the dependent variable.
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The theorems that we are going to use are designed for the equation (1.2).

To demonstrate our method we choose a special equation which possesses a variety of
different types of singularities. We will then show how at most points of interest for that
special equation just one set of linearly independent solutions can be given.

In order to convince the reader about the usefulness of our approach, let us first
describe two benefits whcih do not involve many technicalities. One benefit in oscillation
theory and the other in acoustic wave propagation. '

Thanks to the fact that we were able to reduce the asymptotic behaviors of solutions
of second order equations to the consideration of just two theorems, a simple necessary
and sufficient condition for oscillation of solutions of (1.2) is possible. Namely, let ¢(z) be
a real meromorphic function at z = b, (b finite or not), then a nontrivial solution of (1.2)
possesses infinitely manyzeros with accumulation point at b if and only if the function

B(e) =tmt [*1/g+ (%%’)3 dt (1.3)

is unbounded as z — b~ (or z — b*). This is proved in [3,4,5].

The two theorems mentioned here lead to a new natural normalization of incident and
reflected waves. A local analysis of these wave functionas lead to a few local principles of
wave propagation in inhomogenecus media. It turns out that

a) Reflection increases as inhomogeneity increases.
b) Amplitude of oacillation increases as inhomogeneity increases.
c) The amount of oscillation of a wave function decreases as inhomogeneity increases.

d) The transmission is a monotone increasing function of the time frequency. This is
due to (1].

2. The main theorems

References [3] and [4] give two sets of invariant asymptotic formulas of the second order
differential equation

Y = é(z)y | (2.1)

with ¢(z) being a meromorphic function of z on [a, b].
A function called the “comparability index” I(z), is defined as follows.

¢'(z)

This is a mapping which provides important information on the asymptotic nature
of solutions of (1.2). For example, if I*(z) # —1 on [a,b], then the general solution is
determined by (3], if I?(z) = —1 at z = b, then the general solution is given by [4]. This
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implies that in “most cases”, namely I2(z) # —1, the local asymptotic theory is covered
by just one set of formulas. _
Let us define the following functions which will appear in the solutions given in Theo-

rem 2.1 and Theorem 2.2. _
Ao = [¢+ (G5 | (23)

i @) i )
=)= 2T EE) " 20 1) @4)

From [3], one set of solution is given as

and

Theorem 2.1 Let ¢(z) be meromorphic in interval [a,b]. Assume that for all 23,25 €
[a, B]

z
~M< Re/ “Ms)ds < M, (2.5)

zy

where M 1is a fized number. Lel the number p, defined below, satisfy

p= /ab Ir(t)] dt < co. (2.6)

Then (2.1) possesses two linearly independent solutions

v1=[(0 +49)(1+pu) —i(6 - "'P)le]\‘/‘;_'leXP/z e+ (%%)2 dt (2.7)
. . . -1 ® | 1¢'
v2 = [(0 + i9)p1z — (8 — i) (1 + pa2)] Vo' exp — / o+ (ZE—)’ dt (2.8)

and their derivatives are given by

= (0= )+ o) i+ il VB Texp [T o+ G a (29)

= (0= W)pua +i0+ W) +pn)) V5 Texp— [((er ((ENa (210)

where the mappings pyy, p12,p21 and paa are “perturbations” which can be calculated from
certain integral equations given in [3] and

f=m+m!, (2.11)
v=m-m71, (2.12)
1=l
| m= . (2.13)
In the case I%(b) = —1, the solution given in [4] has different representations with

respect to (1): b is a singular regular point of ¢(z) and (2): b is a regular point of ¢(z).
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- Theorem 2.2 Let ¢(z) be meromorphic on [a,b]. Also assume that
k)= -1

Then, (2.1) is nonoscillatory at b=, and when b is o singular regular point for (2.1) we
have

e1qz1 . (tziquz +ea(1+qu)(1 +3)

-1
= 1-g)tar(1 , 2.14
v = (mg) (1 - g)tar (14 a2 + ==+ o) (2.14)
- qi201+g
yz = (mg) 7 (1 - g)ez(1 + g2z + —121(——.(}_)’ (2.15)
- t (I12+61(1+(I11))(1—§)

o o Yg(1 4 g)ema (14 qpp + 102 (21 , 2.16
Y1 q(1+ g)ta( q22 fa1 L+ 9)tar ( )
- 1—g

vy =-—m lq(1+g)ea(l+ qoz + %}—g—)) (2.17)

In this case |ta1(b7)| = oo.

If b is a regular point, then

-1 - ga(l—g)  taqrz  tai(1+g22)(1—g)
= (mq)~ (1 + Fler(l + qu + + + . (218
y1=(mq)” (1 + g)ea( q11 153 p er(l+9) ) ( )
_ 1+g
i = (m0) (1= Jea(1+ gy + 22Dy, (219)
' -1 ~ g21(1+9)  taiqiz  tar(1+q22)(1 +9)
= 1- 1 — — 2.20
Y1 m q( g)el( + q11 1— g_ + 1 61(1 _ g) )1 ( )
_ 1-g
vy = —m g1+ gea(1 + guz + W2E2D)), (2.21)

1+yg

where the mappings q11, q12, 921 and q22 are “perturbations” which can be determined from
a set of integral equations given in [{] and the functions in (2.14) to (2.21) are given as
below.

7= ¢4(2), (2:22)
9= ,\_d,d1:<12,01= q;l, (2.23)
m=(1 +gg)%, (2.24)
€1 = exp /bz A1(s) ds,e; = exp/bz Az2(s) ds, (2.25)
A=~ (g7 —mm)m™E Xy = - - (§g' - mm')m™?, (2.26)
ta1 = 6(z, zo0,z) exp/bz A1(s) ds, (2.27)
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. z 8
5(z, 81,82) = exp/ r21(s) exp/ (A1 — A2)dnds, (2.28)
8] 82

=& _my (2.29)
21_2¢ m g' .

Note that equations (2.14) to (2.17) as well as equations (2.18) to (2.21) follow from
one and the same matrix formula representation in [4].

3. The various cases considered

The original equation we are going to discuss is given ass

d {1-2%dy 1 sh(o? + z?) .
dr \o? —z?dz — 1 =0 3.1
where o, and € represent some parameters.

With a straight forward transformation of equation (3.1), we reach a general second
order linear differential equation

(@) +b(e)y' + clay =0, (5.2
where
z? z m(o? + z?
ole) = 2 b(e) = T ) = (Bt S e ()

The linear transformation
y(z) = u(z)z(z) (3.4)
with
fo
u(z) = ————

takes the differential equatidn (3.2) into the canonical form

2'(z) = ¢(z)2(z) (3.5)

here #(z) = o(1 — o%)(0? + 22 — 3z%) + a?(1 — z?)(0? — 2?)?
o(1 — z2)2(o? — 22)2

_ (1 - 2?)(o* — 24) + oe(0? — 2?)3(1 - 2?)
o(1 — 22)%(o? — z2)?
which has singular regular points at z = +1 and z = *o.
We remark that the Liouville-Green (or WKB) approximations can not be applied here
and the Frobenius’ method, although applicable, is inconvenient to use. This is so because

for o close to 1, the “perturbation” power series obtained from the Frobenius’ method will
have a very small radius of convergence.

(3.6)
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Since ¢(z) is a function of z?, we consider only the asymptotic behaviors of the solutions

atz=1,and z =0 for o > 0.
Our first goal is to calculate the comparability index. A straight forward calculation

reveals that
!
() = 22
462 (z)
- e o(1 — 0%)z(20% + 2? + o + 32° — 3z* — 42? ~ 0?) — mozl(1 - 2?)*(0? - 2?) )
{o(1 — 02)(0? + 222 — 3z%) + (1 — 22)[om2(0? — 22)? — fn(ot — z%) + o¢(0? — 2?)3]}2
(z/2)(1 — 22)(0? — 2%)[om?(0? — 2?) — h(o? + 22)|(e0/2)(0? — 1)z(1 — z?)(0? — 2?)°
{o(1 - 02)(0? + 222 — 324) + (1 — 22)[oh%(0? — 22)% — #ia(0? — z*) + oe(a? - x2)3]}%
(3.7
We can then generate a table for [(z) as z — 1 and z — o(0 # 1) as shown below:
i(z) P(a)
z=1l{z#0o) -1 -1
=0 1/V3  1/3
Because of the above limits, we distinguish among the following cases.
Case 1. z — 1 with o #1;
Case 2. z— 1witho =1;
Case 3. z— o witho # 1.
In the following sections, we are going to utilize the two theorems of section 2 in order
to handle the variety of cases summarized above.

4. Application of theorem 2.1 for o # 1

Now we will apply Theorem 2.1 and Theorem 2.2 to derive the general solutions for
(3.1) with the consideration of the three cases mentioned at the end of section 3. For
the sake of exposition, we will only calculate the leading asymptotic terms and set the
perturbation terms p;; and g;x,7,k = 1,2 in our formulas to be zero.

We start with Case 3. From the table in the last section, we know that as z -— ¢ and
o # 1,1*(z) — 1/3. Therefore Theorem 2.1 is applicable.

As z — o, the ¢(z) in (3.6) behaves like

3(1 — o?)z? 1 m(o? + z?

$(z) = (1 - z%)(o? - x2)2{1 t [32:2(1 —z2) B 30(1 - crz):r:z]([r2 - 12)
m? €
M) o G R T e G R
3(1 - o?)z?

(1 - z2)(0? — 22)2° (4.1)

In order to use Theorem 2.1, we need certain limitary values of mappings as z — o.
According to equations (2.13), (2.12) and (2.11) we have

_(V3-in
m(ff)-(ﬁ 25 (4.2)
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V3-iy  (VBHin (VB-i)i - (VB+i)h

( (\/—_*_ ) —(\/— ’) = \/§ ) (4'3)
and .
0(0) = (byh 4 (s - AR (B (19

By plugging (4.3) and (4.4) into (2.7), (2.8), (2.9) and (2.10), equation (3.5) has the
general solution

ald) = @+6E) ([ B0 +EE)} ds
(VB +a) + (VB i) 2(1—i)(o” — )3 (l—x)

(4.5)

34\/2—2(1 - 02) (o0 — z)
n(e) = ~i(0- )(#() exp( [ (Be)(1+ P(e))} ds
(VB )I - )+ (VE+i)E(1+)(0? ~ 2?) (1 - 2 (o - ) ()

34y/2z(1 — o?)%
with derivatives
A) = (0~ W) exp([ ($)1+ () ds)

L ((VB-)i( - i)+ (VB +i)s (1+:))34\F(1-o) (47)

\/_(02—22) (l—xz) (o - x)

#4(e) = i(0+i)(@)t exp(- [ (#)1+ () ds)
(VB +4) - (VB = )3(1 - 1))35/E(1 — 0?)4(0 — )
VE(0? - 2?)3(1 - 22)s ’

From equation (3.4), we can transform z into y. That is, the general solutions of
equation (3.1) are given as

(4.8)

(0 +2)((VB=9)3i(1+5)+ (V3+)i(1—1))
34V2z(1 + 2)i(1 - 2)5(1 - 0?)%

0+x(f+t) (1—1)—-(\/_ 1)z (1+i))(a—z)2'
34v/2z(1+2)4(1 - z)¢(1 - 0?)%

vi(z) = u(z)z1(z) = , (4.9)

y2(z) = u(:z)z.g(:c) (4.10) .

5. Application of Theorem 2.2 for ¢ #1

— 343 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



We now consider the nature of solutions of (3.1) as z — 1. i'rom (3.6), ¢(z) behaves

like

_ (1-0?) 322 m(o? + 2?) | mi(o? - %)
#(z) = (1 - 22)2(o? — 22 {1+(1- xz)[(oz —2?)  o(1-0?) 1-o?
e(o? — z%)?
MR I o

Since {2(z) — —1 in this case, we can assume that asymptotically
P(z) = -1+ a;(1 - 2%) + a1 — )% + - - -, (5.2)

here a;,a and all those coefficients for the higher order terms can be calculated by means
of comparison of the coefficients of (1 — z2) of all powers in (5.2) with the expression from
(3.7) with £ — 1. We give only a; here since it is the dominant coefficient.

(1 - 0?)[om?*(o? — 1) — m(o? + 1) + ea(1 — 0%)Y
o(1 —o?)?
3lom?(o? — 1) — m(o? + 1) + ge(o? — 1)?]
o(l —a?)? '

(23]

According to (5.2), we calculate the following mappings which will be used to develop
the general solution. From equation (2.3), we get

Mz) = [#(z)(1+1%(z))]?
= (1= o*) (el = 2% + aa(1 - 22 + - )(1 - 2?)2(o? ~ 2P|

Qg
2= 1) as x—)»l (5.3)

and from equation (2.23) and (2.24), we have

dy(z) = ¢2(z) ~ i _lxz),/;:fz = 2(1‘_ g = 1, (5.4)

c1(z) = l(z)dy(z) ~ 5(1—1_17 as z—1, (5.5)
_Ae) -di(z)

9(z) = (®) 1, (5.6)

m(z)=(1+gg)7 as z— 1. (5.7)

By equation (2.26), we have

Ar(z) = Mz) — (99 — mm")Ym™% ~ A(z) - Mj

!

'I__"I -2
ig' —ig')m 1)]%+5% as z—1 (5.8)

2

231

~ Ale) - - 2(z -

~
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and

Aa(z) = -M\(z) - (g¢' ~ mm')m™?
~ _)\(x) _ (gg' - ilg)m-z

2
~ () - +129 ym”?
~ —Xfz) as z—1. (5.9)

We also have, from equation (2.25)
z

e1(2) = exp( | u(s) do)
Zo

~ exp(—y/2ai(zo— 1) - ig(zﬂ)— + %) as a—1 (5.10)

and

erle) = exp([ Na(s)ds)

~ exp(y/2a1(zo — 1) + ‘.g(;o) - -;—) as z—1, (5.11)

where z( is a point in the neighborhood of z = 1, which is arbitrary and is equal to one
for convenience. If we choose g = 1, then we have

ey ~1 and eg ~ 1.

Finally by equation (2.27) we have

tai(z) = ei1d(z,zo,2)
~ (;”¢((Z)) m 2 (s)g'(s)) exp(2 [ Ma(e) dt) ds)es
¢(z)
E(l oz )+t+g(:1:o)) as z—1 (5.12)

where zg could be any number different than 1.
Hence by Theorem 2.2, as z — 1, we have two solutions z; and 22 and their derivatives
as below .
z(z) = (mg) e (l+3) +tn(l-g)}
1— 2nls 9 .2 1 . 1
(1-2%)3(o? — 2 )‘(1+*)[1+ Lin #(z)

V2(1 - 0?)% sy T 9(x0))] (5.13)
z2(z) = (mg)"'(1-g¢)
(1-2?)3(0® — 2%) (1 +1) (5.14)

V2(1 - 0?3
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and
z(z) = m"IQ{el(l - g) +ta(l+g)}

(-1 o . |
2(56—1);[ +5 ( ( )+ +g( 0))] (515)

2h(z) = —m 1gex(1 + g) ~ —-2((—::—-3—%—. (5.16)

Again from (3.6), we have the general solutions of (3.1) as z approaches to 1.

vi(z) = u(l‘)zl(z)
(0% — 2?)% (1+1)[ 1( ¢(z)
V2(1 - 02)4 2 ¢(z0)

+ i+ g(0))], (5.17)

(02 = 2?) (1 +1)

y2(z) = u(z)22(z) ~ (5 18
2(z) = u(z)z(z) Vi1 - o)} )
As we can see, y; and y; are bounded as z goes to 1.
6. The application of Theorem 2.1 and Theorem 2.2 for ¢ =1
We now go ahead to consider the general solution in the case 2 — 1 with o = 1.
For this case, equation (3.6) reduces to
m(1 — z2)% + (1 — z2)* — m(1 - 2%)(1 - z%)
= : . 6.
4(z) e (61)
As z — 1, ¢(z) is approximated as follows
m? m(1 + z%) m(1 + z?) m
~ — ~ — ~ — . 6.2
@~ Gy T T T 222 (1= 1) (6.2)
By plugging ¢ = 1 into (3.7), we get
(z) = (z/2)(1 - 2?)*[m?(1 — 2%) - (1 + 2%)] ~ vhz(1 — 2?)3 (6.3)
[M2(1 — 22)3 ~ (1 ~ 22)2(1 + 22) + (1 — 22)4]3 '
Hence for 0 =1 ‘
2 1 .
P(z) ~ (- 2= a5 z—1, 6.4
ot = 6.4)

7 could be any value. But only two kinds of values make differences in the approximation.
So we consider the following two cases:

Case 1: i = ¢, that is I*(z) = —

We again assume that as z — 1

PB(z) = —1+ o3(1 - z%) + az(1 — z?%)? SaRRE (6.5)
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where aj, az and so on can be determined by calculating the coefficients of (6.5) and (6.3).

For v = %, our manipulation shows that

z? m 11
=~ as = — 1.

T12(1+a?)? 142 48

23]

With the series expansion of {2(z) in hand, the mapping defined in equation (2.3) has
a neat form as below:

Mz) = [#(=)1+1(2))]2

\/_ (1l + z2)(ar(1 - 22) + az(1 — z2)2 +--*)
' -7

oy

2(z-1)

as z— 1. (6.6)

Again we calculate the following functions according to Theorem 2.2 with the asymp-
totic approximation (6.5) and (6.6), with the same way as we did in section 5.

di(z) = qﬁ(:c) ~ ‘/—7?1(1__*;:)22) ~ o i 9 as z— 1, (6.7)

al) = o) ~ ST R
—m(l+ 2 (1-2%)

1 .
2(1 - z) as z—1 (6.8)
VO Gl .0) K VL .
9(z) = ¢(z) =) g *° 1, (6.9)
z) = Mz) -~ di(z) %  as z—
9(=) ") 1, (§.1o)
mz) = (1+9(=)3(z)7 =v2 as z—-1, (6.11)
Az) = A=) - (99" — mm')m™% ~ A(z) ~ (_gg_’—__%';(j_)Ln_‘_z
~ Az) - (—ig' “2"9')"‘__2 ~ /2(:1 ) + 1;—' as z—1, (6.12) |
Az(z) = -Az) - (' — mm')m I~ —\(z) - Eﬁ_—_g;‘_’)L_n_‘_z
| (3¢' +1ig')ym™2 a ig'
~ ) - 2 "y 2(::11) )
= —Afz) as z—1 (6.13)
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We get from (2.25) that

eifz) = exp(/z: A1(s) ds)
~ exp(—1/2a1(z0 — 1) — f!l_(gg)_ + -;—) as z— 1, (6.14)

ei(z) = exp(/z: A2(s) ds)

~ exp(y/2a3(zo — 1) +\ i—%@l - %) as z—1, (6.15)

where g is any value in the neighborhood of z = 1. For the purpose of brevity we let zo
be 1. Hence we have

e ~1 and e2~1.
Alsoasz — 1

tai(z) = 6(z,z0,z)er1(z) ~ [2¢;((Z)) riz((;z)]exp@/: A1(n) dn dsei(z)
[1 ¢(x)

5+ 5 9@ (6.16)

The above functions enable us to invoke Theorem 2.2, we have two linearly independent
solutions

z(z) = (mg) Her(1+9) + tar(1 - g)}

VI = 2% (0® — 2%)3(1 +3) 1, ¢()
Va0 o)} [1+3 ¢( ) T 2 (1+g(x0))] (6.17)

~

(@) = (mg)ex(l-g)
VL= 2)(e? — 2?)«(1+3)
o) (6.18)

~

and their derivatives,

A(e) = —1{61(1_9)'“21(”,,)}
~ (j_—( +30n —‘—))+z+g(zo))1, (6.19)

Zy(z) = —m " lges(1+ g) ~ ”2(\1/5‘;)‘1" (6.20)

v1,¥2, Y} and yj can be obtained using equation (3.4). We calculated for y; and y; as
y(z) = u(z)a(z)

G R LILE) _#() i
73— o)t 1 + ¢( ) T i + g(z0))) (6.21)
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a.nd

We see again that y; and y2 are bounded at the hmlt.
Let us now examine the other case.

Case 2: m # % . ‘
I(z) ~ \/;_ as z - 1. (6.23)
m
Since 1 # %, so [(z) # —1. Theorem 2.1 is applicable.
_(1—=il(z) : V2 + 1 .
(z) = (m) (\/_mZ — 1) as z—1, (6.24)
PE)=m-m~ \/‘/_(;;i\l/)\‘/_m s (6.25)
8(z) = m+m™! \/\/—(_;1—'-\1/)72_';_1 as z— 1. (6.26)
m—1)s

Therefore by applying Theorem 2.1 we obtain the asymptotic form of solutions
z .
a(z) = 0+ )6~ exp( | (6(s)(1 + ()1 ds)

VV2h+ 1(1+4) + V2R - 1(1 —4) 24y/1— 3 -z xpl; ! Ao (__)] (6.27)

(2m - 1)4 (—mc

z2(z) = ~i(0 — ip)¢ ¥ exp(— / " ($(s)(1 + 12()))  ds)

\/ m—-1(1—-14) - V2 +1(1+14)248/1 -2 1-—1: xp[- -\/——m(

(2 - 1)} (—m)’

From Theorem 2.1, their derivatives are

A4(5) = (0 - )6* exp( | (G(a)(1+ (@)1 da)

WA 1(1-4) + VIR - 1(14) (- )zexp[_;.\/i——%ln(i——g—z)], (6.29)

(2m - 1)ivVI—z 2

() = i(0 + iv)t exp(~ / “(8(s)(1+ 2(s)))E ds)

VB =101+ - VBR 10 - VER gt LT T

(2m—1) \/l—x

) (6.28)

-~

&I'—

)l (6.30)
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By utilizing equation (3.4), we obtain the corresponding approximations to yi, ¥z, ¥}
and y;. Here we give only y; and y3,

y1(z) = u(z)z1(z) .
_ VV2in 4+ 1(1+4§) + V2 — 1(1 - i) Vo? — 22 exp[%mln(lf—z)], (6.31)

(2 - 1) (2(-m))

y2(z) = u(z)2a(2)

VER 119 - VYRR ) Vo L g ) ()

(27 - 1) (2(~r))* 1-=

7. Concluding remarks

The asymptotic solutions at the singular points as well as regular points of second
order ODE’s can be treated with two packages of approximations. We demonstrated this
for an equation with various parameters which involved the consideration of many cases.
Each of these cases was discussed separately, with each invoking either Theorem 2.1 or
Theorem 2.2. Our unified approach could have an edge on the conventional traditional
methods. Some of the benefits have already been reaped in problems of wave propagation.
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