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Abstract By generalizing and developing C. V.Pao’s inner product method in studying
the Liapunov stability, this paper deals with the extreme stability, Liapunov stibility,
existence and uniqueness of the stationary position of nonlinear systems. The main
results are applied to determine the stable oscillations of nonlinear periodic systems.

1. Introductions

Consider the nonlinear nonautonomous differential system

dz :

E{ = A(t):l: + f(t’a:)) ' (11)
where z € R",t € I = [to,+0),A(t) = (aij(t))nxn is a real continuous matrix on
I,f(t,z) : I Xx R® — R" is continuous and ensures the uniqueness of Cauchy solutions

of (1.1).

Liapunov stability of the solutions of (1.1) has been studied enormously mainly with
V function method in which the meritis that the solutions of (1.1) are not necessary while
the shortness is that there is no general method and rule of constructing V' functions.
Besides, to study the stability of some solution Z(t), one always assumes that z(t) is given
and then (1.1) can be reduced by translations y(t) = z(t) — () into

W AWy + 1y + D) - 1(L50) 2 G(L), (1.2)

and the problem becomes to study the stability of the trivial solution of (1.2). Hence, the
criterion based on (1.2) is very differcult to be verified.

On the other hand, the extreme stability introduced by LaSalle, Lefschitz?l and
Yoshizawa does not depend on certain solutions and is a kind of stronger stability.

C. V.Paol'*¥ introduced the inner-production method which allows the norm induced
from the inner production of a Hilbert space to replace V-function while still preserving
V-functions advantages. Also, one is able to avoid the difficulty of constructing V -function.

*Received Nov. 12, 1991.
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By revising and developing inner-product method, and applying it to a kind of more
general dissipative differential operators, this paper obtains a series of results regarding
extreme stability and extremely asymtotical stability of (1.1). These results take all the
results of [1] as special cases. We introduce the concept of extreme unstability and its
criterion. Also, the existence, uniqueness and Liapunov stabibity of the equilibrium of (1.1)
are studied. As an application, a concrete criterion for the existence of stable oscillation
of nonlinear periodic system is given.

2. Definitions and Lemmas

Let z = col(zy, - -,z,) € R",y = col(y1, -+, yn) € R™. The inner-product of z,y is
(z,9) -—:E y—zztyn (2'1)

which induces a norm )
llz|| = (z,z)2

Lemma 2.1 LetV be an n X n real symmeteric positive definite matriz, and an inner
product be defined as

(z,9)v £ (2,Vy), =,y€ R, (2.2)
lell} £ 2, V2).
Then there exist constants § > 0 and v > 0, such that
Sllzlf* < 2}, < Il (2.3)
t.e., inner products (2.1) and (2.2) are equivalent.
Proof Omitted (see [1], Lemma 2.1).

Definition 2.1 Operator A (linear or nonlinear) is said to be generalized dissipative
regarding to inner product (2.1), if there exists C = diag(cy,---,cn) > 0 (i.e., ¢; > 0,
t=1,...,n), such that

(A(z - y),C(z - y)) <0, Vz,ye R™

Operator A (linear or nonlinear ) is said to be generalized strongly dissipative regarding
to inner product (2.1), if there exists C = diag(cy,---,c,) > 0 and a constant 8 > 0 such
that

(A(z - y),C(z-y)) < -B(z—y,z—y), Vz,y€ R".

Lemma 2.2 A necessary and sufficient condition for the matriz A = (aij)pxn to be
a generalized dissipative operator (generalized strongly dissipative operator) regarding to
inner product (2.1) is that there ezists C = diag(cy, -+, cn) > O such that ATC + CA is
semi-negative definite (negative definite).
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Proof Since

(Az - 9),C(z-y)) = (Alz-y)'Clz-y)=(z-y)TATC(z - y)
= 3@-9T(ATC+CA)z - y)

0, when ATC + CA is semi-negative definite;
—B{(z — y),(z — y)), when ATC + CA is negative definite.

The lemma is proved.

In the following, z(t,to, zo), y(¢,t0, yo) denote the solutions of (1.1), passing through
initial point (to, o), (to, yo) respectively. '

Definition 2.2 Solutions of (1.1) are extremely stable, if Ve > 0,36(e,ty) > 0,Vzo,y0 €
R"™, we have

ll=(t, to, zo) — y(t,to, vo)|| <€, fort>to, |jxo— yoll < 6.

Definition 2.3 Solutions of (1.1) are extremely attractive, if Voo, yo € R", we have
[|z(t, 20, z0) — y(t,t0, yo)ll = 0 (t — +o0);

solutions of (1.1) are extremely asymptotically stable, if solutions of (1.1) are extremely
stable and extremely attractive; solutions of (1.1) are eztremely exponentially stable, if
there are constants M > 0,a > O such that

122, to, z0) — y(t, to, yo) || < Me™0t),

Definition 2.4 Solutions of (1.1) are strongly (weakly) eztremely unstable, if Jeo >
0,V6 > 0 for Vzqo # yo € R*(3zo # yo € R™) and ||zo — yo|| < 8, Ity > to such that

lz(t1, to, z0) — y(t1,t0,v0)|| > eo.

Lemme 2.3 Suppose that (1.1) satisfies the conditions ensuring the existence and unique-
ness of the solutions, there exists an w =const.> 0 with A(t + w) = A(t), f(t + w,z) =
f(t,z) for Vt € I,Vz € R™, solutions of (1.1) are extremely attractive, and that (1.1) has
a bounded solutions. Then (1.1) has a unique w-periodic solution, and all solutions tend
to this periodic solution ast — +oo.

Proof Omitted (see [2]).
In this case system (1.1) is called a stable oscillations system.
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3. Extreme Stability of Non-autonomous Systems

In the following we discuss the extreme stability of solutions of (1.1).

Theorem 3.1 Let matriz A(t) € Clto,+o00) and f(t,z) : [to, +00) X R™ — R™ be contin-
uous. If there ezists a diagonal matriz C = diag(cy, - -,cn) > 0, such that Vz,y € R*,t €
[to, +oo) imply

(f(t,2) = f(t,y), Clz - v)) < K(t)llz — yl*(K(t) € [to, +00)).

Then, for any solutions z(t) and y(t) of (1.1), we have the evaluation

I(8) — w(o) < ©/Cllalio) = o)l exp [ ((s) + K (s))/Cds,

Y

where (t) is the largest characteristic value of %(AT(t)C +CA(t), C max ci,

1<
Cw min ¢;. Therefore,
1<i<n

1) f ®(v(s) + K(s))ds < +oo(t > to) implies that the solution of (1.1) are extremely
stable;

2) ft+°° s) + K(s))ds = —oo implies that the solution of (1.1) are extremely asym-
totically stable

3) ftjwh(s) + K(s))ds < ~a(t —tg) (t > tg) implies that the solutions of (1.1) are
extremely exponentially stable.
Proof Let z(t),y(t) be solutions of (1.1), z(t) = z(t) — y(¢t), (¢, 2) £
Then z(t) is a solution of

ft,z) = f(ty).

dz
dt

Since C' is symmetric positive definite, (Cz, z) is positive difinite. It is easy to prove

that
2((t) + K(t))

= A(t)z + f(t,2). (3.1)

2022 | < Yz, (32)

Integrating (3.2) from ¢; to t, we have

(Cz(t), 2(t)) < (Cz(to), 2(to)) exp/ —(’7————(—Dds. (3.3)
It follows that
CllO] < (©2(0),2(0) < Clls(eo)exp [ ZTITEEN g gy
and N _
I(0) = v(0l < ()3 lslto) ~ vt exp [ ALy, g5

This proves all the conclusions of Theorem 3.1.
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Remark If C = E (unity matrix) we obtain Theorems 3.1, 3.2, 3.3 of [1]. Obviously, our
conditions are weaker than these theorems.

Theroem 3.2 Let A(t) € Clto,+o0), f(t,x) : [to,+o0) X R* — R™ be continuous.
Soppose that there exists a function K(t) € C[tg, +00) such that

1f(t:z} = f(t; )l < K@)z - ull,

and C = diag(cy, -, ¢n) > 0. Then

1) ftjw['y(s) + CK(s)]ds < +oo,t > to, implies that solutions of (1.1) are extremely
stable;

2) f{:oo['y(s) + CK(s)]ds = —oo,t > to, implies that solutions of (1.1) are extremely
asymptotically stable; ‘

3) ftto [1(s)+CK(s)]ds < —a(t—to),t > to, implies that solutions of (1.1) are extremely
ezponentially stable, where 4(t) is the largest characteristic value of %(CA + ATC).

The proof is obvious.

Theorem 3.3 Let A(t) € C[to, +o0), f(t, z) : {to, +00) X R* — R™ be continuous. Soppose
that there exists a function K(t) € C[tg, +00) and C = diag(cy,-+,cn) > O such that

(f(t,2) = f(t,9),C(z - y) 2 K(t)l|= - vl

and

/t(ﬂ(s) + K(s))ds is unbounded,
to

where B(t) is the smallest characteristic value of 3(CA + ATC). That solutions of (1.1)
are strongly eztremely unstable.

Proof Let z 2 z — y, f(t,2) 2 f(t,z) — f(t,y). Because (Cz,z) is positive definite, we

have 4 c
z,2
E(Cz,z) 3.1) = 2[B(t) + K(t)] o
It follows that to ”
(Cz,2) > (Cz(t),z(to))exp/ —(—'B%——(f—)lds
ty
and t o K
Cllz|? > (Cx, 2) > (Ca(to), 2(to)) exp /! _(@Ciﬂds. (3.3)
0
(3.3) shows that Theorem 3.3 is ture.
4. Applications in Stable Oscillations
Consider the following nonlinear periodic system,
dz
g = A(t)l‘ + f(t,ZL'), (41)
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where A(t +w) = A(t), f(t + w,z) = f(t,z),w = const. > 0, A(t) € C[to, +o0), f(¢,z) :
(to,+00) x R™ — R" is continuous and ensures the uniqueness of solutions.

Theorem 4.1 Suppose that (§.1) has bounded solutions, and that there exists a matriz
C = diag(cy,--+,cn) >0
such that Vz,y € R™,t € [tg,+00) imply
(F(t:2) - (t,4),Cle - ) < K@O)llz - yll*, K(t) € Clto, +00)

and

[ 60+ K(e)ds = oo,

where y(s) 1s the largest characteristic value of %(CA+ AT). Then system ({.1) is a stable
oscillatory system, i.e., (4.1) has a asymptotically stable w-periodic solution.

Theorem 4.2 If ({.1) has bounded solutions, and there exists a function K (t) € Clto, +00)
and C = diag(cy,---,cp) > O such that

1f(t,2) - f& 9)ll < K(t)ll= - ]

and

[ ts) + CH (s = oo,

to
where y(s) s the largest characteristic value, then system ({.1) is a stable oscillatory
system.
When the conditions of Theorem 4.1 and Theorem 4.2 are satisfied, Theorem 3.1 and
Theorem 3.2 ensure that the solutions of (4.1) are extremely asymptotically stable. By
Lemma 2.3, system (4.1) is a stable oscillatory system.

Corollary Consider n-dimensional inear homogeneous systems as follows:

dz
i A(t)z + f(t), (4.2)

where A(t), f(t) are continuous on [tg,+00). Assume Jw > 0 such that
At +w) = A(0), 1t +w) = £(2)

and there exists C = diag(cy, -, cn) > 0 with

I

to

where y(s) is the largest characteristic value of %(CA+ATC). By the well-known methods
in ordinary differential theory, we can easily prove that ({.2) has bounded solutions (see
the ezample below). Hence ({.2) is a stable oscillatory system.
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5. Determination of Uniqueness of Stationary State

In the following, we disscuss the uniqueness of stationary state-constant solution of

(1.1).

Theorem 5.1 Suppose that n-order matriz A(t) € Cltg, +00), f(t,z) : [to, +00) X R™ —
R™ s continuous, f(t,0) = O, and that there ezxists a function K(t) € C|tog,+o0) and
C = diag(cq,--+,cn) > 0 such that

(f(t,z),Cz) < K(t)||z||*>, =€ R", t € [to,+0), and 3t; € [ty, +00)

such that
7(t1) + K(t1) <0,

where y(t) is the largest characteristic value of J(CA + ATC). Then the trivial solution
z =0 of (1.1) is the unique stationary position.

Proof The proof of Theorem 3.1 shows that

(Cx(t),z(t)) < (C(to), z(to)) exp /t ' ?Q(S)%K(S_)) is.

Since 7(t1) + K(t1) < 0 and 7(t), K (t) are continuous at t,, there exists an interval (¢, t")
such that t; € (¢',t") C (to, +o0) and

1(t)+ K(t) <0, te (t',t").
Let Z(t) = C # 0 be another stationary state, then
(") # z(t").
Hence we have,
CHMLHM) < (CH Eexp [ 2N TEEy,
< (CZ(t"),z(t')).( since y(t) + I;(t) <0forte(t't")

but on the other hand (CZ(t"), Z(t")) = (CZ(t'), Z(¢')). This contradiction shows z(t) = 0.
The theorem is proved.

Theorem 5.2 Suppose
1) n-order matriz A(t) € C[to,+00) and f(t,z) : [to, +00) X R® — R" are continuous.
2) f(t,0) = 0,3K(t) € Clto, +o0) and (f(t,z),Cz) > K(t)||z||*,z € R",t € [to, +0),
3t € (t,+o0), such that
B(t1) + K(t1) > 0,

where B(t) is the smallest characteristic value of 1(C A+ ATC). Then the trivil solution
18 the unique stationary point of system (1.1).

Proof The proof is similar to that of Theorem 5.1.
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In the following, we consider a kind of autonomous, nonlinear system:

%; = Az + f(z),

where z € R™, A(ai;)nxn, f(z): B® — R" is continuous, f(0) = 0.

Theorem 5.3 If there exists a sysmetric positive definite n X n matric V such that

(f() - fW),V(z-y)) > Klz—yl*, B+ K >0,

where K s a negative const., 8 is the smllest characteristic value of %(VA + ATV), then
(5.1) has a unique stationary position = 0.

The proof is omitted.

The following result can be established by using theorem 5.3.

Theorem 5.4 If there exists a symmetric positive definite n X n matriz V such that

(f(z) = F(¥), V(z — v)) < Allz = ol

+ is a negative constant, and o + v < 0, where o 1s the largest characteristic value of
MV A+ ATV), then (5.1) has a unique stationary position = = 0.

Remark Results in this section are appliable to studying nonlinear algebric systems and
transcendent systems.

6. Liapunov Stability of Trivil Solution

In the following, we discuss the stability in Liapunov’s meaning of the trivil solution
of (1.1).

Assume
f(t,0) =0, A(t) € Clto,+00), f(t,z) : [to, +00) X R* — R"
is continuous.

Theorem 6.1 Suppose that . HT A(t) 2 exists, and there ezists a sysmmetric positive
—+00
difinite matriz V such that
(f(t,2),Vz) < K(t)]|=]]”.

Let u be the largest characteristic volue of ;—(VA+ATV). If there exists a sufficiently small
constant € > 0, then the following assumptions are the respective sufficient conditions for
the (i) stability, (i) globally asymptotic stability, (11i) globally ezponential stability of the
trivil solution of (1.1):

(i) f,to(;l + € + K(s))ds, is bounded (t > to);
(%) ftjm(u + €+ K(s))ds = —oo;

(5ii) [f (n+ e+ K(s))ds < —2(t — ty),a > 0,t > to.
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Proof tlirgo A(t) = A implies that for € > 0,3T > tg such that

XT[(A(t) - /i)TV-+ V(A(t) - Az < 2¢]|z]’,t > T.

Conditions (i)—(iii) are respectively corresponding to
t

/ (u+ €+ K(s))ds is bounded, t > to;
T,

/T+o°(p + ¢+ K(s))ds = —oo;

1

t
/ (u+e+ K(s))ds = —a(t — T1) + p, (t > T1,p is a constant).
T,

Besides, we can only deal with the stability of the trivial solution of (1.1) for t > Tj.
Consider the inner product (z,Vz),

L@V |y = XTATEV + V(A0 +20(t,2),V2(0)
2(p+e+ K(t)

)(x,V:r), t > T1,~ is a constant.

We have

(#(0),V2(0) < {a(1),Va(Ty)) exp [ 2T = KN gs, 15 1.

The last inequality leads to the desired conclusion.

Theorem 6.2 If ||f(t,z)|| < e(t)||:z:||,tlimoo A(t) = A and there ezists an € > O and

symmetric positive definite matriz V. Then the following conditions ensure respectively
the stability, asymptotic stability and ezponential stability of the trivial solution of (1.1),
‘where p is the largest characteristic value of 3 (VA + ATV), and v > 0) satisfies (2.9):

t
/ (u + e+ v%e(s))ds is bounded for t > t,
ty
[ too
/ (u+ e+ 7%¢(s))ds = —oo,
to
t
/ (u+ e+ 7%e(s))ds < —a(t — to), a>0.
to
Proof Since

{f(t,z),Ve)

IA

(f(t2), 2y <L) vl < Allelvl £t o))
Ye(t)lz|* £ K(t)||z)%,

IA

all the assumptions of Theorem 6.1 are satisfied.
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