Note on the Maximal Coefficient of the Multinomial $(x_1 + x_2 + \cdots + x_k)^{n*}$

Zhu Ziqing (Dept. of Math., Huazhong University of Science and Technology)

In a paper entitled "maximal Coefficient of the Multinomial $(x_1 + x_2 + \cdots + x_k)^{n}$ " by Wu Qiqi [1], it was shown that the maximal coefficient \bar{c} is given by the following cases:

- (i) If $k \mid n, n/k = d \ge 1$, then $\bar{c} = n!/(d!)^k$;
- (ii) If $k \mid n, n \equiv (\text{mod}k), 1 \leq r \leq k-1$ with $z = \left[\frac{n}{k}\right]$ (integer part of n/k), then $\bar{c} = n!/(z!)^{k-r}((z+1)!)^r$.

Here it may be noticed that kd = n or (k - r)z + r(z + 1) = n.

The original proof is unnecessarily complicated and diffuse. Actually the values \bar{c} given by (i) and (ii) can be proved very simply.

Recall that the multinomial number is generally denoted by

$$\left(\begin{array}{c}n\\n_1,\cdots,n_k\end{array}\right)=(n;n_1,\cdots,n_k)=\frac{n!}{n_1!\cdots n_k!},\ (n_1+\cdots+n_k=n).$$

Thus for the case (i) with kd = n it suffices to show that $(d!)^k \leq (n_1!) \cdots (n_k!)$, where $kd = d + \cdots + d = n_1 + \cdots + n_k = n$.

One may say that (n_1, \dots, n_k) is a partition of n with k parts.

In particular, (d, \dots, d) is a partition of n with k parts. It is clear that the partition (d, \dots, d) can be transformed "step by step" to obtain (n_1, \dots, n_k) by removing units I's from one part into the other, successively.

For any two positive integers α and β with $\alpha \leq \beta$, it is evident that $\alpha!\beta! \leq (\alpha - 1)!(\beta + 1)!$. This implies that when (d, \dots, d) is transformed into (n_1, \dots, n_k) , the product $(d!)^k = (d!) \cdots (d!) \leq (n_1!) \cdots (n_k!)$. The same argument applies to the partition of n with k parts:

$$(k-r)z+r(z+1)=\underbrace{z+\cdots+z}_{k-r}+\underbrace{(z+1)+\cdots+(z+1)}_{r}=n,$$

so that we have $(z!)^{k-r}((z+1)!)^r=z!\cdots z!(z+1)!\cdots (z+1)!\leq (n_1!)\cdots (n_k!)$ and the case (ii) is also justified.

References

[1] Wu Qiqi, Maximal coefficient of the multinomail $(x_1x_2\cdots x_k)^n$, SEA Bull. Math. Vol. 15, No. 1(1991), 77-82.

^{*}Received May 4, 1992.